Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 125
Filter
1.
Sci Total Environ ; 953: 176066, 2024 Sep 07.
Article in English | MEDLINE | ID: mdl-39250971

ABSTRACT

Antibiotics play an essential role in the aquaculture industry, but their overuse and weak degradability inevitably lead to light to severe residues in natural and aquaculture environments. Most studies were interested in the occurrence, distribution, and ecological risks of a limited number of antibiotics in natural environments (rivers, lakes, and coastal regions) with a minor focus on antibiotic presence in either water, sediments, or organisms in aquaculture environments located in specific regions. In this study, we conducted a comprehensive investigation into the occurrence and distribution of up to 32 antibiotics [including 15 quinolones (QNs) and 17 sulfonamides (SAs)] in organisms and their corresponding environmental matrices from 26 freshwater aquaculture ponds in Northeast Zhejiang, China. A total of 13, 9, 7, and 7 antibiotics were detected in pond water, sediments, feeds, and aquaculture organisms, respectively, with concentration ranges of 0.6-92.2 ng/L, 0.4-1169.3 ng/g dw,

2.
Int J Mol Sci ; 25(17)2024 Aug 25.
Article in English | MEDLINE | ID: mdl-39273171

ABSTRACT

The murine model is invaluable for studying intricate interactions among gut microbes; hosts; and diseases. However; the impact of genetic variations in the murine microbiome; especially in disease contexts such as Klebsiella pneumoniae (Kp) infection; still needs to be explored. Kp; an opportunistic global pathogen; is becoming increasingly prevalent in regions like Asia; especially China. This study explored the role of the gut microbiota during Kp infection using mouse model; including wild-type and rpoS mutants of Kp138; KpC4; and KpE4 from human; maize; and ditch water; respectively. Under stress conditions; RpoS reconfigures global gene expression in bacteria; shifting the cells from active growth to survival mode. Our study examined notable differences in microbiome composition; finding that Lactobacillus and Klebsiella (particularly in WKp138) were the most abundant genera in mice guts at the genus level in all wild-type treated mice. In contrast; Firmicutes were predominant in the healthy control mice. Furthermore; Clostridium was the dominant genus in all mutants; mainly in ∆KpC4; and was absent in wild-type treated mice. Differential abundance analysis identified that these candidate taxa potentially influence disease progression and pathogen virulence. Functional prediction analysis showed that most bacterial groups were functionally involved in biosynthesis; precursor metabolites; degradation; energy generation; and metabolic cluster formation. These findings challenge the conventional understanding and highlight the need for nuanced interpretations in murine studies. Additionally; this study sheds light on microbiome-immune interactions in K. pneumoniae infection and proposes new potential therapeutic strategies.


Subject(s)
Bacterial Proteins , Gastrointestinal Microbiome , Klebsiella Infections , Klebsiella pneumoniae , Sigma Factor , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/pathogenicity , Animals , Gastrointestinal Microbiome/genetics , Mice , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Sigma Factor/genetics , Sigma Factor/metabolism , Klebsiella Infections/microbiology , Klebsiella Infections/genetics , Humans , Gene Expression Regulation, Bacterial , Disease Models, Animal , Female , Virulence/genetics
3.
Front Endocrinol (Lausanne) ; 15: 1412823, 2024.
Article in English | MEDLINE | ID: mdl-39145317

ABSTRACT

Objective: The oxidative balance score (OBS) is a comprehensive concept that includes 20 oxidative stressors and can be used to assess individual pro-oxidant versus antioxidant exposure, and the aim of the present study was to investigate the association between OBS and the risk of diabetic kidney disease (DKD), low estimated glomerular filtration rate (low-eGFR) and albuminuria in patients with diabetes mellitus (DM). Methods: This cross-sectional study included nationally representative consecutive National Health and Nutrition Examination Survey DM patients aged 18 years and older from 2003-2018. The continuous variable OBS was converted into categorical variables by quartiles, and weighted multiple logistic regression analyses and restricted triple spline models were used to explore the relationships. We also performed subgroup analyses and interaction tests to verify the stability of the results. Results: A total of 5389 participants were included, representing 23.6 million non-institutionalized US residents. The results from both multivariate logistic regression analysis and restricted cubic spline models indicated that OBS and dietary OBS levels were negatively associated with the risk of DKD, low-eGFR, and albuminuria, without finding a significant correlation between lifestyle OBS and these clinical outcomes. Compared to the lowest OBS quartile group, the prevalence risk of DKD (OR = 0.61, 95% CI: 0.46-0.80), low-eGFR (OR = 0.46, 95% CI: 0.33-0.64) and albuminuria (OR = 0.68, 95% CI: 0.51-0.92) decreased by 39%, 54% and 32%, respectively, in the highest OBS quartile group. The results remained stable in subgroup analyses and no interaction between subgroups was found. Conclusion: Higher levels of OBS and dietary OBS were associated with a lower risk of DKD, low-eGFR, and albuminuria. These findings provided preliminary evidence for the importance of adhering to an antioxidant-rich diet and lifestyle among individuals with diabetes.


Subject(s)
Albuminuria , Diabetes Mellitus, Type 2 , Diabetic Nephropathies , Glomerular Filtration Rate , Oxidative Stress , Humans , Cross-Sectional Studies , Male , Female , Albuminuria/epidemiology , Diabetic Nephropathies/epidemiology , Diabetic Nephropathies/physiopathology , Diabetic Nephropathies/etiology , Middle Aged , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/physiopathology , Adult , Aged , Nutrition Surveys , Risk Factors
4.
Ren Fail ; 46(2): 2373272, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38967189

ABSTRACT

BACKGROUND: Exercise therapy can effectively manage chronic kidney disease (CKD) risk factors and improve renal function and physical fitness, but the challenge lies in choosing the right exercise type tailored to patients' condition. METHODS: An electronic search of databases including PubMed, The Cochrane Library, EMBASE, Web of Science, VIP, WanFang, and CNKI was performed. The random effects model was used. Mean difference was employed as the effect size for continuous variables, with 95% confidence interval (CI) provided. RESULTS: A total of 36 RCTs were included in this study. Compared to conventional therapy (CT), the combination of three exercise therapies with CT resulted in notable benefits in enhancing six minutes walk test (6MWT) capacity, 24-h urinary protein quantity (24hUTP), systolic blood pressure (SBP), diastolic blood pressure (DBP). Resistance exercise therapy (RT) + CT were more effective than CT to reduce serum creatinine (Scr), body mass index (BMI), and hemoglobin A1c (HbA1c) and improve estimated glomerular filtration rate (eGFR). In terms of improving peak oxygen uptake (VO2 peak), only two exercise modalities were involved, aerobic exercise therapy (AT) and combined (Resistance-Aerobic) exercise therapy (CBT), both of which were more efficacious than CT. The efficacy ranking overall demonstrated clear benefits for RT in enhancing eGFR and 6MWT, decreasing Scr, BMI, SBP, DBP, and HbA1c, while AT was more suitable for boosting VO2 peak, and CBT had greater potential for reducing 24hUTP. CONSLUSIONS: Exercise therapy combined with CT offers significant advantages over CT in many cases, but no single exercise modality is universally effective for all indicators.


Subject(s)
Exercise Therapy , Glomerular Filtration Rate , Network Meta-Analysis , Renal Insufficiency, Chronic , Humans , Renal Insufficiency, Chronic/therapy , Renal Insufficiency, Chronic/physiopathology , Renal Insufficiency, Chronic/complications , Exercise Therapy/methods , Risk Factors , Blood Pressure , Randomized Controlled Trials as Topic , Creatinine/blood , Glycated Hemoglobin/analysis , Glycated Hemoglobin/metabolism
5.
ACS Appl Mater Interfaces ; 16(29): 38466-38477, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-38995996

ABSTRACT

Prolonged sitting can easily result in pressure injury (PI) for certain people who have had strokes or spinal cord injuries. There are not many methods available for tracking contact surface pressure and shear force to evaluate the PI risk. Here, we propose a smart cushion that uses two-dimensional force sensors (2D-FSs) to measure the pressure and shear force in the buttocks. A machine learning algorithm is then used to compute the shear stresses in the gluteal muscles, which helps to determine the PI risk. The 2D-FS consists of a ferroelectret coaxial sensor (FCS) unit placed atop a ferroelectret film sensor (FFS) unit, allowing it to detect both vertical and horizontal forces simultaneously. To characterize and calibrate, two experimental approaches are applied: one involves simultaneously applying two perpendicular forces, and one involves applying a single force. To separate the two forces, the 2D-FS is decoupled using a deep neural network technique. Multiple FCSs are embedded to form a smart cushion, and a genetic algorithm-optimized backpropagation neural network is proposed and trained to predict the shear strain in the buttocks to prevent PI. By tracking the danger of PI, the smart cushion based on 2D-FSs may be further connected with home-based intelligent care platforms to increase patient equality for spinal cord injury patients and lower the expense of nursing or rehabilitation care.


Subject(s)
Machine Learning , Pressure Ulcer , Pressure Ulcer/prevention & control , Humans , Buttocks , Risk Assessment , Pressure , Neural Networks, Computer , Algorithms
6.
J Fungi (Basel) ; 10(7)2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39057379

ABSTRACT

Dodder (Cuscuta spp.) is a dangerous parasitic plant that causes serious damage to crop production and is challenging to eliminate. Herbicide application is a common strategy to control dodder in the field, but it is costly, ineffective, and further results in hazardous outcomes. Therefore, our study aims to identify the potential pathogens in naturally occurring dodder infections which may provide efficient biocontrol options. In this regard, the pathogens were isolated from the infected plants, their pathogenicity was validated through inoculation, and the optimal culture conditions for their growth were identified by determining the pathogenicity difference. The pathogenicity range was determined in vitro using the leaves of common horticultural plants and crops. Furthermore, a small range of horticultural plants parasitized by Cuscuta reflexa in the field were inoculated with the pathogen to determine their biosafety and biocontrol potential, and the pathogens were identified by morphological and molecular characterization. We found 7 strains that were isolated after pathogen enrichment culture. Among them, Cbp6 and Cbp7 showed the highest pathogenicity against C. reflexa. After testing the inoculation of more than 50 species of plants, only 9 species showed varying degrees of lesions on leaves, which proved the high biosafety for common plants. Field spraying of these pathogens showed a good control effect on C. reflexa after 21 days; the disease severityreached 66.0%, while its host plant did not display obvious symptoms. In conclusion, the pathogens Cbp6 and Cbp7 were identified as Alternaria alternata, and the results of this study provide a theoretical basis for the biological control of dodder.

7.
PLoS One ; 19(6): e0305366, 2024.
Article in English | MEDLINE | ID: mdl-38843169

ABSTRACT

[This corrects the article DOI: 10.1371/journal.pone.0275998.].

8.
Molecules ; 29(12)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38930985

ABSTRACT

The abuse and irrational use of tetracyclines (TCs) in human medicine and animal husbandry has become a serious concern, affecting the ecological environment and human health. The aim of this study was to develop a sensitive and selective method using fully automatic solid-phase extraction coupled with ultra-performance liquid chromatography-tandem mass spectrometry for the determination of twelve TCs in water. Four isotope-labeled internal standards for TCs were used to correct matrix effects. Several parameters affecting extraction efficiency were systematically optimized, and the optimum experimental conditions found were 1.0 L water sample with 0.5 g/L Na2EDTA (pH 3.0) extracted and enriched by CNW HLB cartridge and eluted by 4 mL of acetone:methanol (v/v, 1:1). The enrichment factors were up to 798-1059 but only requiring about 60 min per six samples. Under the optimized conditions, the linearity of the method ranged from 0.2 to 100 µg/L for 12 TCs, the detection limits were as low as 0.01-0.15 ng/L, and the recoveries were in the range of 70%-118%, with relative standard deviations less than 15%. The developed method can be successfully utilized for the determination of 12 TCs in pure water, tap water, river water, and mariculture seawater. In summary, three and six TCs were detected in river water and mariculture seawater, respectively, with total concentrations of 0.074-0.520 ng/L (mean 0.248 ng/L) and 0.792-58.369 ng/L (12.629 ng/L), respectively. Tetracycline (TC) and oxytetracycline (OTC) were the dominant TCs in river water, while doxytetracycline (DXC) and OTC were dominant in mariculture seawater.


Subject(s)
Drinking Water , Solid Phase Extraction , Tandem Mass Spectrometry , Tetracyclines , Water Pollutants, Chemical , Tandem Mass Spectrometry/methods , Solid Phase Extraction/methods , Tetracyclines/analysis , Water Pollutants, Chemical/analysis , Drinking Water/analysis , Drinking Water/chemistry , Chromatography, High Pressure Liquid/methods , Limit of Detection
9.
Front Endocrinol (Lausanne) ; 15: 1364028, 2024.
Article in English | MEDLINE | ID: mdl-38863925

ABSTRACT

Background: The aim of this cross-sectional study was to elucidate the associations between various domains of physical activity, such as occupation-related (OPA), transportation-related (TPA), leisure-time (LTPA) and overall physical activity (PA), and diabetic kidney disease. Methods: Our study encompassed 2,633 participants, drawn from the cross-sectional surveys of the National Health and Nutrition Examination Survey (NHANES) between 2007 and 2018, and employed survey-weighted logistic regression, generalized linear regression, and restricted cubic spline (RCS) analyses to ascertain the relationship between different domains of physical activity and diabetic kidney disease. Results: After controlling for all confounders, multivariate logistic regression analyses revealed a lack of correlation between the various domains of physical activity and the prevalence of diabetic kidney disease. Multiple generalized linear regression analyses showed that durations of PA (ß = 0.05, 95% CI, 0.01-0.09, P = 0.012) and TPA (ß = 0.32, 95% CI, 0.10-0.55, P = 0.006) were positively associated with eGFR levels; and LTPA durations were inversely associated with UACR levels (ß = -5.97, 95% CI, -10.50 - -1.44, P = 0.011). The RCS curves demonstrated a nonlinear relationship between PA, OPA, and eGFR, as well as a nonlinear correlation between PA and ACR. Subgroup and sensitivity analyses largely aligned with the outcomes of the multivariate generalized linear regression, underscoring the robustness of our findings. Conclusion: Our population-based study explored the association between different domains of physical activity and diabetic kidney disease. Contrary to our expectations, we found no significant association between the duration of physical activity across all domains and the prevalence of diabetic nephropathy. Nonetheless, renal function markers, including eGFR and UACR, exhibited significant correlations with the duration of total physical activity (TPA) and leisure-time physical activity (LTPA), respectively, among diabetic patients. Interestingly, our findings suggest that diabetic patients engage in physical activity to preserve renal function, ensuring moderate exercise durations not exceeding 35 hours per week.


Subject(s)
Diabetic Nephropathies , Exercise , Nutrition Surveys , Humans , Male , Female , Cross-Sectional Studies , Middle Aged , Diabetic Nephropathies/epidemiology , Diabetic Nephropathies/physiopathology , Adult , Leisure Activities , Aged , Glomerular Filtration Rate , Prevalence
10.
Plant Phenomics ; 6: 0198, 2024.
Article in English | MEDLINE | ID: mdl-38939747

ABSTRACT

The pod and seed counts are important yield-related traits in soybean. High-precision soybean breeders face the major challenge of accurately phenotyping the number of pods and seeds in a high-throughput manner. Recent advances in artificial intelligence, especially deep learning (DL) models, have provided new avenues for high-throughput phenotyping of crop traits with increased precision. However, the available DL models are less effective for phenotyping pods that are densely packed and overlap in in situ soybean plants; thus, accurate phenotyping of the number of pods and seeds in soybean plant is an important challenge. To address this challenge, the present study proposed a bottom-up model, DEKR-SPrior (disentangled keypoint regression with structural prior), for in situ soybean pod phenotyping, which considers soybean pods and seeds analogous to human people and joints, respectively. In particular, we designed a novel structural prior (SPrior) module that utilizes cosine similarity to improve feature discrimination, which is important for differentiating closely located seeds from highly similar seeds. To further enhance the accuracy of pod location, we cropped full-sized images into smaller and high-resolution subimages for analysis. The results on our image datasets revealed that DEKR-SPrior outperformed multiple bottom-up models, viz., Lightweight-OpenPose, OpenPose, HigherHRNet, and DEKR, reducing the mean absolute error from 25.81 (in the original DEKR) to 21.11 (in the DEKR-SPrior) in pod phenotyping. This paper demonstrated the great potential of DEKR-SPrior for plant phenotyping, and we hope that DEKR-SPrior will help future plant phenotyping.

11.
Foods ; 13(6)2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38540855

ABSTRACT

The amount of macrolide (MAL) residues in aquatic products, including oleandomycin (OLD), erythromycin (ERM), clarithromycin (CLA), azithromycin (AZI), kitasamycin (KIT), josamycin (JOS), spiramycin (SPI), tilmicosin (TIL), tylosin (TYL), and roxithromycin (ROX), was determined using solid-phase extraction and ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The residues were extracted with 1% ammonia acetonitrile solution and purified by neutral alumina adsorption. Chromatographic separation was completed on an ACQUITY UPLC BEH C18 column with acetonitrile-0.1% formic acid aqueous solution as the mobile phase, and mass spectrometry detection was performed by multiple reaction monitoring scanning with the positive mode in an electrospray ion source (ESI+). Five isotopically labeled compounds were used as internal standards for quality control purposes. The findings indicated that across the mass concentration span of 1.0-100 µg/L, there was a strong linear correlation (R2 > 0.99) between the concentration and instrumental response for the 10 MALs. The limit of detection of UPLC-MS/MS was 0.25-0.50 µg/kg, and the limit of quantitation was 0.5-1.0 µg/kg. The added recovery of blank matrix samples at standard gradient levels (1.0, 5.0, and 50.0 µg/kg) was 83.1-116.6%, and the intra-day precision and inter-day precisions were 3.7 and 13.8%, respectively. The method is simple and fast, with high accuracy and good repeatability, in line with the requirements for accurate qualitative and quantitative analysis of the residues for 10 MALs in aquatic products.

12.
Purinergic Signal ; 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38470513

ABSTRACT

Studies have confirmed that P2 purinergic receptors (P2X receptors and P2Y receptors) expressed in gastric cancer (GC) cells and GC tissues and correlates with their function. Endogenous nucleotides including ATP, ADP, UTP, and UDP, as P2 purinergic receptors activators, participate in P2 purinergic signal transduction pathway. These activated P2 purinergic receptors regulate the progression of GC mainly by mediating ion channels and intracellular signal cascades. It is worth noting that there is a difference in the expression of P2 purinergic receptors in GC, which may play different roles in the progression of GC as a tumor promoting factor or a tumor suppressor factor. Among them, P2 × 7, P2Y2 and P2Y6 receptors have certain clinical significance in patients with GC and may be used as biological molecular markers for the prediction of patients with GC. Therefore, in this paper, we discuss the functional role of nucleotide / P2 purinergic receptors signal axis in regulating the progression of GC and that these P2 purinergic receptors may be used as potential molecular targets for the prevention and treatment of GC.

13.
Clin Transl Oncol ; 26(6): 1467-1479, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38190034

ABSTRACT

PURPOSE: Systemic immune-inflammatory markers have a certain predictive role in pathological complete response (pCR) after neoadjuvant treatment (NAT) in breast cancer. However, there is a lack of research exploring the predictive value of markers after treatment. METHODS: This retrospective study collected data from 1994 breast cancer patients who underwent NAT. Relevant clinical and pathological characteristics were included, and pre- and post-treatment complete blood cell counts were evaluated to calculate four systemic immune-inflammatory markers: neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), lymphocyte-to-monocyte ratio (LMR), and systemic immune-inflammation index (SII). The optimal cutoff values for these markers were determined using ROC curves, and patients were classified into high-value and low-value groups based on these cutoff values. Univariate and multivariate logistic regression analyses were conducted to analyze factors influencing pCR. The factors with independent predictive value were used to construct a nomogram. RESULTS: After NAT, 383 (19.2%) patients achieved pCR. The area under the ROC curve is generally larger for post-treatment markers compared to pre-treatment markers. Pre-treatment NLR and PLR, as well as post-treatment LMR and SII, were identified as independent predictive factors for pCR, along with Ki-67, clinical tumor stage, clinical lymph node stage, molecular subtype, and clinical response. Higher pre-NLR (OR = 1.320; 95% CI 1.016-1.716; P = 0.038), pre-PLR (OR = 1.474; 95% CI 1.058-2.052; P = 0.022), post-LMR (OR = 1.532; 95% CI 1.175-1.996; P = 0.002), and lower post-SII (OR = 0.596; 95% CI 0.429-0.827; P = 0.002) are associated with a higher likelihood of achieving pCR. The established nomogram had a good predictive performance with an area under the ROC curve of 0.754 (95% CI 0.674-0.835). CONCLUSION: Both pre- and post-treatment systemic immune-inflammatory markers have a significant predictive role in achieving pCR after NAT in breast cancer patients. Indeed, it is possible that post-treatment markers have stronger predictive ability compared to pre-treatment markers.


Subject(s)
Breast Neoplasms , Neoadjuvant Therapy , Neutrophils , Humans , Female , Breast Neoplasms/pathology , Breast Neoplasms/drug therapy , Breast Neoplasms/blood , Breast Neoplasms/therapy , Retrospective Studies , Middle Aged , Adult , ROC Curve , Biomarkers, Tumor/blood , Lymphocytes , Aged , Inflammation/blood , Predictive Value of Tests , Nomograms , Blood Platelets/pathology , Monocytes , Prognosis
14.
Pest Manag Sci ; 80(2): 333-340, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37682584

ABSTRACT

BACKGROUND: Insect pests negatively affect crop quality and yield. The excessive use of chemical pesticides has serious impacts on the environment and food safety. Therefore, development of effective management strategies in the form of bio-agents have important agricultural applications. Tenebrio molitor, a storage pest, causes losses of grains, medicinal materials, and various agricultural and related products in the warehouse. Bacillus subtilis YZ-1 isolated from naturally deceased Pieris rapae has been found to exhibit significant toxicity against T. molitor. RESULTS: Treatment with B. subtilis YZ-1 fermentation broth resulted in a 90-95% mortality rate of T. molitor within 36 h post-treatment, indicating some active substances may have insecticidal activity in the bacterial supernatant. A bioactivity-guided fractionation method was used to isolate the insecticidal compounds from YZ-1, which led to the identification of surfactins. Additionally, a surfactin deletion mutant YZ-1△srfAA was constructed and the surfactin production by the mutant YZ-1△srfAA was verified through liquid chromatography-mass spectrometry (LC-MS). Further, YZ-1△srfAA exhibited loss of insecticidal activity against T. molitor, Plutella xylostella and Achelura yunnanensis. The insecticidal activity and surfactins contents of several strains of Bacillus sp. were also tested and correlation was found between varying surfactins yield and insecticidal activity exhibited by different strains. CONCLUSION: Conclusively, our results suggest that B. subtilis YZ-1 may provide a novel approach for plant protection against agricultural pests. © 2023 Society of Chemical Industry.


Subject(s)
Bacillus , Insecticides , Lepidoptera , Animals , Bacillus subtilis , Insecta , Insecticides/pharmacology
15.
Sci Rep ; 13(1): 22329, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38102206

ABSTRACT

Far infrared radiation in the range of 4-20 µm has been showed to have biological and health benefits to the human body. Therefore, incorporating far-infrared emissivity additives into polymers and/or fabrics hold promise for the development of functional textiles. In this study, we incorporated nine types of natural minerals into polypropylene (PP) film and examined their properties to identify potential candidates for functional textiles and apparels. The addition of 2% mineral powders into PP film increased the far-infrared emissivity (5-14 µm) by 7.65%-14.48%. The improvement in far-infrared emissivity within the range of 5-14 µm, which overlaps with the peak range of human skin radiation at 8-14 µm, results in increased absorption efficiency, and have the potential to enhance thermal and biological effects. Moreover, the incorporation of mineral powders in PP films exhibited favorable ultraviolet (UV) protection and near-infrared (NIR) shielding properties. Two films, specifically those containing red ochre and hematite, demonstrated excellent UV protection with a UPF rating of 50+ and blocked 99.92% and 98.73% of UV radiation, respectively. Additionally, they showed 95.2% and 93.2% NIR shielding properties, compared to 54.1% NIR shielding properties of PP blank films. The UV protection and NIR shielding properties offered additional advantages for the utilization of polymer composite with additives in the development of sportswear and other outdoor garments. The incorporation of minerals could absorb near-IR radiation and re-emit them at longer wavelength in the mid-IR region. Furthermore, the incorporation of minerals significantly improved the heat retention of PP films under same heat radiation treatment. Notably, films with red ochre and hematite exhibited a dramatic temperature increase, reaching 2.5 and 3.2 times the temperature increase of PP films under same heat radiation treatment, respectively (46.8 °C and 59.9 °C higher than the temperature increase of 20.9 °C in the PP film). Films with additives also demonstrated lower thermal effusivity than PP blank films, indicating superior heat insulation properties. Therefore, polypropylene films with mineral additives, particularly those containing red ochre and hematite, showed remarkable heat capacity, UV-protection, NIR-shielding properties and enhanced far infrared emissivity, making them promising candidates for the development of functional textiles.

16.
Int J Mol Sci ; 24(21)2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37958876

ABSTRACT

Aphids are a serious threat to rapeseed (Brassica napus L.) production, and cause unmanageable loss. Therefore, effective prevention and management strategies are urgently required to avoid losses. Bacillus amyloliquefaciens AK-12 isolated from a dead aphid with aphicidal activity was tagged with a green fluorescent protein through a natural transformation. The transformed strains were checked for stability and growth, and the best-performing strain was tested for its colonization inside and outside the rapeseed plant. The stability of AK-12-GFP reached more than 95%, and the growth curve was consistent with that of AK-12. After 30 days of treatment, the colonization of 1 × 106 CFU/g was recorded in rapeseed leaves. Interestingly, AK-12 reduced the aphid transmission rate compared with the control and improved the growth of the rapeseed seedlings. Meanwhile, the AK-12 strain also exhibited phosphorus, potassium-solubilizing, and nitrogen-fixing activity, and produced 2.61 µg/mL of IAA at 24 h. Regulation in the activity of four enzymes was detected after the AK-12 treatment. Phenylalanine ammonia lyase (PAL) was recorded at a maximum of 86.84 U/g after 36 h, and catalase (CAT) decreased after 48 h; however, peroxidase (POD) and polyphenol oxidase (PPO) reached the maximum within 12 h of AK-12 application. Additionally, important resistance genes related to these enzymes were upregulated, indicating the activation of a defense response in the rapeseed against aphids. In conclusion, defense enzymes and defense-related gene activation could improve the pest resistance in rapeseed, which has good application prospects for the future to be developed into biopesticide.


Subject(s)
Aphids , Bacillus amyloliquefaciens , Brassica napus , Brassica rapa , Animals , Brassica napus/metabolism , Aphids/physiology , Peroxidase/metabolism
17.
Molecules ; 28(21)2023 Nov 03.
Article in English | MEDLINE | ID: mdl-37959840

ABSTRACT

A magnetic adsorbent based on a C-nanofiber (Fe3O4@C-NFs) nanocomposite was synthesized using a simple one-pot co-precipitation method. The characterized results showed that the obtained C-nanofiber-coated magnetic nanoparticles had many attractive features such as a large specific surface area and a highly interwoven and branched mesoporous structure, as well as distinguished magnetism. The nanocomposite was then used as an adsorbent in the magnetic solid phase extraction (MSPE) of four typical tetracyclines (oxytetracycline, tetracycline, chlortetracycline, and doxycycline) in aquatic products. The TCs in the extract were determined using ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). Experimental variables of MSPE, including the sorbent amount, pH condition, adsorption and desorption time, and desorption solvent, were investigated and optimized systematically. The method validation indicated that the developed method showed good linearity (R2 > 0.995) in the range of 1.0-200 ng/mL. The average recoveries at the spiked levels ranged from 90.7% to 102.7% with intra-day and inter-day relative standard deviations (RSDs, n = 6) ranging from 3.72% to 8.17% and 4.20% to 9.69%, respectively. The limit of detection (LOD) and limit of quantification (LOQ) for the four kinds of TCs were 0.7 µg/kg and 2.0 µg/kg, respectively. Finally, MSPE based on C-nanofiber-coated magnetic nanoparticles was successfully applied to TC analysis in real aquatic products (grass carp, large yellow croaker, snakehead, mandarin fish, Penaeus vannamei, swimming crab, etc.). Compared with traditional extraction methods, the proposed method for TC analysis in aquatic products is more sensitive, effective, recyclable, and environmentally friendly.


Subject(s)
Heterocyclic Compounds , Nanofibers , Animals , Tetracyclines/analysis , Tandem Mass Spectrometry/methods , Chromatography, High Pressure Liquid/methods , Anti-Bacterial Agents , Heterocyclic Compounds/analysis , Solid Phase Extraction/methods , Magnetic Phenomena , Limit of Detection
18.
Eur J Med Chem ; 261: 115877, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37857146

ABSTRACT

Large amounts of adenosine triphosphate (ATP), a natural P2X7 receptor activator, are released during colorectal carcinogenesis. P2X7 receptor activation regulates the activity of colorectal cancer (CRC) cells by mediating intracellular signal transduction. Importantly, the opening and activation of membrane pores of P2X7 receptor are different, which can play a dual role in promoting or inhibiting the progression of CRC. These can also depend on P2X7 receptor to regulate the activities of immune cells in the microenvironment, play the functions of immune regulation, immune escape and immune monitoring. While the use of P2X7 receptor antagonists (such as BBG, A438079 and A740003) can play a certain inhibitory pharmacological role on the activity of CRC. Therefore, in this paper, the mechanism and immunomodulatory function of P2X7 receptor involved in the progression of CRC were discussed. Moreover, we discussed the effect of antagonizing the activity of P2X7 receptor on the progression of CRC. So P2X7 receptor may be a new pharmacological molecular target for the treatment of CRC.


Subject(s)
Adenosine Triphosphate , Colorectal Neoplasms , Humans , Adenosine Triphosphate/pharmacology , Receptors, Purinergic P2X7 , Ion Channels , Signal Transduction , Purinergic P2X Receptor Antagonists/pharmacology , Colorectal Neoplasms/drug therapy , Tumor Microenvironment
19.
Molecules ; 28(17)2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37687223

ABSTRACT

Pentachlorophenol (PCP) has attracted wide attention due to its high toxicity, persistence, and bioaccumulation. In this study, a sensitive UPLC-MS/MS method for the determination of PCP in seafood samples was developed and validated. The samples were ultrasonic extracted with acetonitrile containing 1% acetic acid-acetonitrile and followed by using a pass-through solid-phase extraction (SPE) cleanup on Captiva EMR-Lipid cartridges. The linearity of this method ranged from 1 to 1000 µg/L, with regression coefficients of >0.99. The detection limit and quantitation limit were 0.5 µg/kg and 1.0 µg/kg, respectively. The recoveries in different types of seafood samples ranged from 86.4% to 102.5%, and the intra-day and inter-day relative standard deviations (RSDs) were 3.7% to 11.2% and 2.9% to 12.1%, respectively (n = 6). Finally, the method has been successfully utilized for the screening of PCP in 760 seafood samples from Zhejiang Province. PCP was detected in 5.8% of all seafood samples, with the largest portion of detections found in shellfish, accounting for approximately 60% of the total. The average concentrations detected ranged from 1.08 to 21.49 µg/kg. The non-carcinogenic risk indices for adults and children who consume PCP ranged from 10-4 to 10-3 magnitudes. All of these indices stayed significantly below 1, implying that the health risk from PCP in marine organisms to humans is minimal.


Subject(s)
Pentachlorophenol , Adult , Child , Humans , Acetonitriles , Chromatography, High Pressure Liquid , Chromatography, Liquid , Dietary Exposure , Seafood , Solid Phase Extraction , Tandem Mass Spectrometry
20.
Front Immunol ; 14: 1229636, 2023.
Article in English | MEDLINE | ID: mdl-37711613

ABSTRACT

Background: While targeted systemic inflammatory modulators show promise in preventing chronic kidney disease (CKD) progression, the causal link between specific inflammatory factors and CKD remains uncertain. Methods: Using a genome-wide association study of 41 serum cytokines from 8,293 Finnish individuals, we conducted a bidirectional two-sample Mendelian randomization (MR) analysis. In addition, we genetically predicted causal associations between inflammatory factors and 5 phenotypes, including CKD, estimated glomerular filtration rate (eGFR), dialysis, rapid progression of CKD, and rapid decline in eGFR. Inverse variance weighting (IVW) served as the primary MR method, while MR-Egger, weighted median, and MR-pleiotropy residual sum and outlier (MR-PRESSO) were utilized for sensitivity analysis. Cochrane's Q test for heterogeneity. Leave-one-out method ensured stability of MR results, and Bonferroni correction assessed causal relationship strength. Results: Seventeen cytokines were associated with diverse renal outcomes. Among them, after Bonferroni correction test, higher tumor necrosis factor alpha levels were associated with a rapid decrease in eGFR (OR = 1.064, 95% CI 1.028 - 1.103, P = 0.001), higher interleukin-4 levels were associated with an increase in eGFR (ß = 0.003, 95% CI 0.001 - 0.005, P = 0.002), and higher growth regulated oncogene alpha (GROα) levels were associated with an increased risk of CKD (OR=1.035, 95% CI 1.012 - 1.058, P = 0.003). In contrast, genetic susceptibility to CKD was associated with an increase in GROa, and a decrease in eGFR may lead to an increase in stem cell factor. We did not find the presence of horizontal pleiotropy during the analysis. Conclusion: We discovered causally related inflammatory factors that contribute to the initiation and progression of CKD at the genetic prediction level.


Subject(s)
Genome-Wide Association Study , Renal Insufficiency, Chronic , Humans , Mendelian Randomization Analysis , Renal Insufficiency, Chronic/genetics , Kidney/physiology , Cytokines/genetics
SELECTION OF CITATIONS
SEARCH DETAIL