Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Food Chem ; 402: 134241, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36126581

ABSTRACT

A simple, ultra-sensitive, and super-stable hydrophobic SERS platform for detection of melamine in milk is developed. The hydrophobic SERS platform was constructed via directly growing hydrophobic carbon/silver nanoparticles on glass by in-situ one-step carbonization using hexadecylpyridinium chloride monohydrate as stabilizer and reducing agent. The performances of SERS platform are systematically studied by using Rhodamine 6G (R6G) as a model, which achieves detection level of 10-13 M and enhancement factor of 3.4 × 1010 for R6G detection with good uniformity and reproducibility, as well as 110 days stability in air. The FDTD simulation was used to confirm SERS enhancement mechanism. More importantly, SERS platform delivers good linear property in the range from 0.01 to 100 ppm, and low limit detection of 9 ppb for melamine detection in milk through direct drop on the platform. The SERS platform could have great applications in food safety, environmental monitoring, biomedicine and other fields.


Subject(s)
Metal Nanoparticles , Silver , Animals , Silver/chemistry , Metal Nanoparticles/chemistry , Milk/chemistry , Spectrum Analysis, Raman , Reducing Agents/analysis , Reproducibility of Results , Cetylpyridinium/analysis , Chlorides/analysis , Limit of Detection , Carbon/analysis
2.
Micromachines (Basel) ; 13(10)2022 Oct 18.
Article in English | MEDLINE | ID: mdl-36296112

ABSTRACT

Harmful algal blooms (HABs) are common disastrous ecological anomalies in coastal waters. An effective algae monitoring approach is important for natural disaster warning and environmental governance. However, conducting rapid and sensitive detection of multiple algae is still challenging. Here, we designed an ultrasensitive, rapid and portable double-layer microfluidic biochip for the simultaneous quantitative detection of six species of algae. Specific DNA probes based on the 18S ribosomal DNA (18S rDNA) gene fragments of HABs were designed and labeled with the fluorescent molecule cyanine-3 (Cy3). The biochip had multiple graphene oxide (GO) nanosheets-based reaction units, in which GO nanosheets were applied to transfer target DNA to the fluorescence signal through a photoluminescence detection system. The entire detection process of multiple algae was completed within 45 min with the linear range of fluorescence recovery of 0.1 fM-100 nM, and the detection limit reached 108 aM. The proposed approach has a simple detection process and high detection performance and is feasible to conduct accurate detection with matched portable detection equipment. It will have promising applications in marine natural disaster monitoring and environmental care.

3.
Chemosphere ; 271: 129830, 2021 May.
Article in English | MEDLINE | ID: mdl-33556630

ABSTRACT

In this work, we have constructed a novel graphitic carbon nitride/multiwall carbon nanotube (GCN/CNT) doped Ti/PbO2 as anode for highly effective degradation of acetaminophen (ACE) wastewater. The ACE removal efficiency of 83.2% and chemical oxygen demand removal efficiency of 76.3% are achieved under the optimal condition of temperature 25 °C, initial pH 7, current density 15 mA cm-2 and Na2SO4 concentration 6.0 g L-1. The excellent electrocatalytic activity of Ti/PbO2-GCN-CNT anode for ACE oxidation is ascribed to the effective suppression of oxygen evolution and the enhanced electron transfer after introducing GCN and CNT. Furthermore, Ti/PbO2-GCN-CNT electrode displays excellent stability and reusability. ACE degradation is accomplished by direct oxidation and indirect oxidation, and ∙OH radical plays primary role in the indirect oxidation of ACE wastewater. The intermediates of ACE degradation are detailly investigated using LC-MS analysis and a possible degradation mechanism is proposed.


Subject(s)
Nanotubes, Carbon , Water Pollutants, Chemical , Acetaminophen , Electrodes , Graphite , Nitrogen Compounds , Oxidation-Reduction , Oxides , Titanium , Water Pollutants, Chemical/analysis
4.
Chemosphere ; 268: 128799, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33187658

ABSTRACT

In this work, Ti/PbO2-Co-Sm electrode has been successfully prepared using electrodeposition and further applied for the electrocatalysis of atrazine (ATZ) herbicide wastewater. As expected, Ti/PbO2-Co-Sm electrode displays highest oxygen evolution potential, lowest charge transfer resistance, longest service lifetime and most effective electrocatalytic activity compared with Ti/PbO2, Ti/PbO2-Sm and Ti/PbO2-Co electrodes. Orthogonal and single factor experiments are designed to optimize the condition of ATZ degradation. The maximum degradation efficiency of 92.6% and COD removal efficiency of 84.5% are achieved in electrolysis time 3 h under the optimum condition (current density 20 mA cm-2, Na2SO4 concentration 8.0 g L-1, pH 5 and temperature 35 °C). In addition, Ti/PbO2-Co-Sm electrode exhibits admirable recyclability in degradation progress. The degradation of ATZ is accomplished by indirect electrochemical oxidation and ∙OH is tested as the main active substance in ATZ oxidation. The possible degradation mechanism of ATZ has been proposed according to the degradation intermediates detected by LC-MS. This research suggests that Ti/PbO2-Co-Sm is a promising electrode for ATZ degradation.


Subject(s)
Atrazine , Water Pollutants, Chemical , Electrodes , Oxidation-Reduction , Oxides , Titanium , Water Pollutants, Chemical/analysis
5.
Chemosphere ; 261: 128201, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33113663

ABSTRACT

In this work, Ti/SnO2-RuO2 dimensionally stable anode has been successfully fabricated via thermal decomposition method and further used for highly efficient electrocatalytic degradation of alizarin cyanin green (ACG) dye wastewater. The morphology, crystal structure and composition of Ti/SnO2-RuO2 electrode are characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray fluorescence spectroscopy (XRF), respectively. The result of accelerated life test suggests that as-prepared Ti/SnO2-RuO2 anode exhibits excellent electrochemical stability. Some parameters, such as reaction temperature, initial pH, electrode spacing and current density, have been investigated in detail to optimize the degradation condition of ACG. The results show that the decolorization efficiency and chemical oxygen demand removal efficiency of ACG reach up to 80.4% and 51.3% after only 40 min, respectively, under the optimal condition (reaction temperature 25 °C, pH 5, electrode spacing 1.0 cm and current density 3 mA cm-2). Furthermore, the kinetics analysis reveals that the process of electrocatalytic degradation of ACG follows the law of quasi-first-order kinetics. The excellent electrochemical activity demonstrates that the Ti/SnO2-RuO2 electrode presents a favorable application prospect in the electrochemical treatment of anthraquinone dye wastewater.


Subject(s)
Anthraquinones/chemistry , Carbocyanines/chemistry , Electrodes , Waste Disposal, Fluid/instrumentation , Biological Oxygen Demand Analysis , Coloring Agents/chemistry , Hydrogen-Ion Concentration , Microscopy, Electron, Scanning , Oxidation-Reduction , Ruthenium Compounds/chemistry , Spectrometry, X-Ray Emission , Temperature , Tin Compounds/chemistry , Titanium/chemistry , Waste Disposal, Fluid/methods , Wastewater/chemistry , Water Pollutants, Chemical/chemistry , X-Ray Diffraction
6.
Chemosphere ; 256: 127139, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32470737

ABSTRACT

The existence of ß-naphthoxyacetic acid (BNOA) pesticide in water system has aroused serious environmental problem because of its potential toxicity for humans and organisms. Therefore, exploiting an efficient method without secondary pollution is extremely urgent. Herein, a promising Ti/PbO2-Co-Pr composite electrode has been successfully fabricated through simple one-step electrodeposition for efficiently electrocatalytic degradation of BNOA. Compared with Ti/PbO2, Ti/PbO2-Co and Ti/PbO2-Pr electrodes, Ti/PbO2-Co-Pr electrode with smaller pyramidal particles possesses higher oxygen evolution potential, excellent electrochemical stability and outstanding electrocatalytic activity. The optimal degradation condition is assessed by major parameters including temperature, initial pH, current density and Na2SO4 concentration. The degradation efficiency and chemical oxygen demand removal efficiency of BNOA reach up to 94.6% and 84.6%, respectively, under optimal condition (temperature 35 °C, initial pH 5, current density 12 mA cm-2, Na2SO4 concentration 8.0 g L-1 and electrolysis time 3 h). Furthermore, Ti/PbO2-Co-Pr electrode presents economic energy consumption and superior repeatability. Finally, the possible degradation mechanism of BNOA is put forward according to the main intermediate products identified by liquid chromatography-mass spectrometer. The present research paves a new path to degrade BNOA pesticide wastewater with Ti/PbO2-Co-Pr electrode.


Subject(s)
Electrolysis/methods , Glycolates/chemistry , Lead/chemistry , Pesticides/chemistry , Titanium/chemistry , Wastewater/analysis , Water Pollutants, Chemical/chemistry , Biological Oxygen Demand Analysis , Electrodes , Electrolysis/instrumentation , Electroplating , Oxidation-Reduction , Oxides/chemistry , Sulfates/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...