Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 99
Filter
Add more filters











Publication year range
1.
J Environ Manage ; 369: 122347, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39236606

ABSTRACT

Landfill is a significant source of atmospheric CH4 and CO2 emissions. In this study, four landfill reactor systems were constructed to investigate the effects of different ventilation methods, including continuous aeration (20 h d-1) and intermittent aeration (continuous aeration for 4 h d-1 and 2 h of aeration every 12 h, twice a day), on properties of landfilled waste and emissions of CH4 and CO2, in comparison to a traditional landfill. Compared with continuous aeration, intermittent aeration could reduce the potential global warming effect of the CH4 and CO2 emissions, especially multiple intermittent aeration. The CH4 and CO2 emissions could be predicted by the multiple linear regression model based on the contents of carbon, sulfur and/or pH during landfill stabilization. Both intermittent and continuous aeration could enhance the methane oxidation activity of landfilled waste. The aerobic methane oxidation activity of landfilled waste reached the maximums of 50.77-73.78 µg g-1 h-1 after aeration for 5 or 15 d, which was higher than the anaerobic methane oxidation activity (0.45-1.27 µg g-1 h-1). CO2 was the predominant form of organic carbon loss in the bioreactor landfills. Candidatus Methylomirabilis, Methylobacter, Methylomonas and Crenothrix were the main methane-oxidating microorganisms (MOM) in the landfills. Total, NO2--N, pH and Fe3+ were the main environmental variables influencing the MOM community, among which NO2--N and pH had the significant impact on the MOM community. Partial least squares path modelling indicated that aeration modes mainly influenced the emissions of CH4 and CO2 by affecting the degradation of landfilled waste, environmental variables and microbial activities. The results would be helpful for designing aeration systems to reduce the emissions of CH4 and CO2, and the cost during landfill stabilization.


Subject(s)
Carbon , Methane , Waste Disposal Facilities , Methane/metabolism , Carbon/chemistry , Carbon Dioxide , Refuse Disposal/methods , Air Pollutants/analysis , Bioreactors
2.
Int Immunopharmacol ; 139: 112745, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39059099

ABSTRACT

Acute kidney injury (AKI) manifests as a clinical syndrome characterised by the rapid accumulation of metabolic wastes, such as blood creatinine and urea nitrogen, leading to a sudden decline in renal function. Currently, there is a lack of specific therapeutic drugs for AKI. Previously, we identified gastrin-releasing peptide receptor (GRPR) as a pathogenic factor in AKI. In this study, we investigated the therapeutic potential of a novel Chinese medicine monomer, aurantiamide (AA), which exhibits structural similarities to our previously reported GRPR antagonist, RH-1402. We compared the therapeutic efficacy of AA with RH-1402 both in vitro and in vivo using various AKI models. Our results demonstrated that, in vitro, AA attenuated injury, necroptosis, and inflammatory responses in human renal tubular epithelial cells subjected to repeated hypoxia/reoxygenation and lipopolysaccharide stimulation. In vivo, AA ameliorated renal tubular injury and inflammation in mouse models of ischemia/reperfusion and cecum ligation puncture-induced AKI, surpassing the efficacy of RH-1402. Furthermore, molecular docking and cellular thermal shift assay confirmed GRPR as a direct target of AA, which was further validated in primary cells. Notably, in GRPR-silenced HK-2 cells and GRPR systemic knockout mice, AA failed to mitigate renal inflammation and injury, underscoring the importance of GRPR in AA's mechanism of action. In conclusion, our study has demonstrated that AA serve as a novel antagonist of GRPR and a promising clinical candidate for AKI treatment.


Subject(s)
Acute Kidney Injury , Mice, Inbred C57BL , Mice, Knockout , Necroptosis , Receptors, Bombesin , Animals , Acute Kidney Injury/drug therapy , Acute Kidney Injury/pathology , Humans , Necroptosis/drug effects , Mice , Male , Cell Line , Receptors, Bombesin/metabolism , Receptors, Bombesin/antagonists & inhibitors , Inflammation/drug therapy , Disease Models, Animal , Kidney/pathology , Kidney/drug effects , Kidney/metabolism , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use
3.
ACS Omega ; 9(17): 19493-19503, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38708253

ABSTRACT

Hydrogen sulfide (H2S) is a very toxic, acidic, and odorous gas. In this study, a calcined zeolite was used to investigate the adsorption performance of H2S. Among particle size, calcination temperature and time calcination temperature and time had significant effects on the adsorption capacity of H2S on the zeolite. The optimal calcination conditions for the zeolite were 332 °C, 1.8 h, and 10-20 mm size, and the maximum adsorption capacity of H2S was approximately 6219 mg kg-1. Calcination could broaden the channels, remove the adsorbed gases and impurities on the surface of zeolites, and increase the average pore size and point of zero net charge. As the zeolite adsorbed to saturation, it could be regenerated at the temperatures between 200 and 350 °C for 0.5 h. Compared with the natural zeolite, the adsorption capacities of dimethyl disulfide, dimethyl sulfide, toluene, CH3SH, CS2, CO2, and H2S were significantly higher on the calcined zeolite, while the adsorption capacity of CH4 was lower on the calcined zeolite. A gas treatment system by a temperature swing adsorption-regeneration process on honeycomb rotors with calcined zeolites was proposed. These findings are helpful for developing techniques for removing gas pollutants such as volatile sulfur compounds and volatile organic compounds to purify biogas and to limited toxic concentrations in the working environment.

4.
ACS Chem Biol ; 19(5): 1040-1044, 2024 05 17.
Article in English | MEDLINE | ID: mdl-38620022

ABSTRACT

Cysteine conjugation is widely used to constrain phage displayed peptides for the selection of cyclic peptides against specific targets. In this study, the nontoxic Bi3+ ion was used as a cysteine conjugation reagent to cross-link peptide libraries without compromising phage infectivity. We constructed a randomized 3-cysteine peptide library and cyclized it with Bi3+, followed by a selection against the maltose-binding protein as a model target. Next-generation sequencing of selection samples revealed the enrichment of peptides containing clear consensus sequences. Chemically synthesized linear and Bi3+ cyclized peptides were used for affinity validation. The cyclized peptide showed a hundred-fold better affinity (0.31 ± 0.04 µM) than the linear form (39 ± 6 µM). Overall, our study proved the feasibility of developing Bi3+ constrained bicyclic peptides against a specific target using phage display, which would potentially accelerate the development of new peptide-bismuth bicycles for therapeutic or diagnostic applications.


Subject(s)
Peptide Library , Peptides, Cyclic , Peptides, Cyclic/chemistry , Cysteine/chemistry , Maltose-Binding Proteins/metabolism , Maltose-Binding Proteins/chemistry , Maltose-Binding Proteins/genetics , Cyclization , Peptides/chemistry , Amino Acid Sequence
5.
Acta Pharmacol Sin ; 45(8): 1673-1685, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38641746

ABSTRACT

Acute kidney injury (AKI) is defined as sudden loss of renal function characterized by increased serum creatinine levels and reduced urinary output with a duration of 7 days. Ferroptosis, an iron-dependent regulated necrotic pathway, has been implicated in the progression of AKI, while ferrostatin-1 (Fer-1), a selective inhibitor of ferroptosis, inhibited renal damage, oxidative stress and tubular cell death in AKI mouse models. However, the clinical translation of Fer-1 is limited due to its lack of efficacy and metabolic instability. In this study we designed and synthesized four Fer-1 analogs (Cpd-A1, Cpd-B1, Cpd-B2, Cpd-B3) with superior plasma stability, and evaluated their therapeutic potential in the treatment of AKI. Compared with Fer-1, all the four analogs displayed a higher distribution in mouse renal tissue in a pharmacokinetic assay and a more effective ferroptosis inhibition in erastin-treated mouse tubular epithelial cells (mTECs) with Cpd-A1 (N-methyl-substituted-tetrazole-Fer-1 analog) being the most efficacious one. In hypoxia/reoxygenation (H/R)- or LPS-treated mTECs, treatment with Cpd-A1 (0.25 µM) effectively attenuated cell damage, reduced inflammatory responses, and inhibited ferroptosis. In ischemia/reperfusion (I/R)- or cecal ligation and puncture (CLP)-induced AKI mouse models, pre-injection of Cpd-A1 (1.25, 2.5, 5 mg·kg-1·d-1, i.p.) dose-dependently improved kidney function, mitigated renal tubular injury, and abrogated inflammation. We conclude that Cpd-A1 may serve as a promising therapeutic agent for the treatment of AKI.


Subject(s)
Acute Kidney Injury , Ferroptosis , Mice, Inbred C57BL , Phenylenediamines , Animals , Ferroptosis/drug effects , Acute Kidney Injury/drug therapy , Acute Kidney Injury/metabolism , Mice , Male , Phenylenediamines/pharmacology , Phenylenediamines/therapeutic use , Cyclohexylamines/pharmacology , Cyclohexylamines/therapeutic use , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , Epithelial Cells/drug effects , Epithelial Cells/metabolism
6.
Chemosphere ; 353: 141551, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38430935

ABSTRACT

Groundwater pollution caused by the leakage of petroleum and various fuel oils is becoming a serious environmental problem. In this study, carbon-based materials including biochar and hydrochar were applied to investigate the effects of additives on the toluene removal in the extracted groundwater under microaerobic condition with the addition of nitrate. Biochar and hydrochar could adsorb toluene, and thus enhance the toluene removal in the system. The toluene removal efficiency was 8.2-8.9 mg/(g·h) at the beginning, and then decreased with time in the control and the hydrochar treatment, while it remained the stable values in the biochar treatment, owing to the fact that biochar could reduce the NO3--N loss by partial denitrification. Moreover, biochar could prompt the growth of toluene-degrading bacteria including Thauera, Rhodococcus, Ideonella and Denitratisoma, which had the capability of denitrification. However, hydrochar could stimulated the growth of denitrifiers without toluene-degrading capacity including Candidatus Competibacter and Ferrovibrio, which might play a key role in the partial denitrification of the system. The findings are helpful for developing remediation techniques of contaminated groundwater.


Subject(s)
Charcoal , Groundwater , Water Pollutants, Chemical , Nitrates/analysis , Denitrification , Water Pollutants, Chemical/analysis , Biodegradation, Environmental
7.
Bioresour Technol ; 395: 130393, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38301942

ABSTRACT

Hydrothermal carbonization temperature is a key factor in controlling the physico-chemical properties of hydrochar and affecting its function. In this study, effects of hydrochar and Fe-modified hydrochar (Fe-HC) prepared at 180 °C (180C-Fe), 220 °C (220C-Fe) and 260 °C (260C-Fe) on anaerobic digestion (AD) performance of swine manure was investigated. Among the three Fe-HCs, 220C-Fe had the highest amount of Fe and Fe2+ on the surface. The relative methane production of control reached 174 %-189 % in the 180C-Fe and 220C-Fe treatments between days 11 and 12. The degradation efficiency of swine manure was highest in the 220C-Fe treatment (61.3 %), which was 14.8 % higher than in the control. Fe-HC could act as an electron shuttle, stimulate the coenzyme F420 formation, increase the relative abundance of Methanosarcina and promote electron transport for acetotrophic methanogenesis in the AD. These findings are helpful for designing an efficient process for treating swine manure and utilizing digestate.


Subject(s)
Manure , Methanosarcina , Animals , Swine , Anaerobiosis , Temperature , Electron Transport , Methane
8.
J Hazard Mater ; 465: 133477, 2024 03 05.
Article in English | MEDLINE | ID: mdl-38218033

ABSTRACT

Electrical fields (EFs)-assisted in-situ bioremediation of petroleum-contaminated groundwater, such as polycyclic aromatic hydrocarbons, has drawn increasing attention. However, the long-term stability, the EFs influence, and metabolic pathways are still poorly understood, hindering the further development of robust technology design. Herein, a series of EFs was applied to the phenanthrene-contaminated groundwater, and the corresponding system performance was investigated. The highest removal capacity of phenanthrene (phe) (7.63 g/(m3·d)) was achieved with EF_0.8 V biofilm at a hydrolytic retention time of 0.5 d. All the biofilms with four EFs exhibited a high removal efficiency of phe over 80% during a 100-d continuous-flow operation. Intermediates analysis revealed the main pathways of phe degradation: phthalate and salicylate via hydroxylation, methylation, carboxylation, and ring cleavage steps. Synergistic effects between phe-degraders (Dechloromonas), fermentative bacteria (Delftia), and electroactive microorganisms (Geobacter) were the main contributors to the complete phe mineralization. Genes encoding various proteins of methyl-accepting (mcp), response regulator (cheABDRY), and type IV pilus (pilABCMQV) were dominant, revealing the importance of cell motility and extracellular electron transfer. Metagenomics analysis unveiled phe-degrading genes, including ring reduction enzymes (bamBCDE), carboxylase of aromatics (ubiD), and methyltransferase protein (ubiE, pcm). These findings offered a molecular understanding of refractory organics' decompositions in EFs-governed biotechnology.


Subject(s)
Groundwater , Phenanthrenes , Polycyclic Aromatic Hydrocarbons , Soil Pollutants , Biodegradation, Environmental , Soil Pollutants/metabolism , Phenanthrenes/metabolism , Polycyclic Aromatic Hydrocarbons/analysis , Biofilms , Soil Microbiology
9.
Biochem Biophys Res Commun ; 689: 149217, 2023 12 31.
Article in English | MEDLINE | ID: mdl-37972446

ABSTRACT

The incidence and mortality rates of colorectal cancer (CRC) have significantly increased in recent years. It has been shown that early diagnosis of CRC improves the five-year survival of patients compared to late diagnosis, as patients with stage I disease have a five-year survival rate as high as 90 %. Through bioinformatics analysis, we identified Kallikrein 10 (KLK10), a member of the Kallikrein family, as a reliable predictor of CRC progression, particularly in patients with early-stage CRC. Furthermore, single-cell analysis revealed that KLK10 was highly expressed in tumor and partial immune cells. Analysis of the biological functions of KLK10 using the Kyoto encyclopedia of genes and genomes and gene ontology indicated that KLK10 plays a role in the proliferation and differentiation of cancer cells, along with the maintenance of tumor function and immune regulation, explicitly by T cells and macrophages. EdU cell proliferation staining, plate clone formation assay, and cell scratch assay demonstrated that KLK10 inhibition by siRNA affected the proliferation and migration of CRC cells. Cell cycle detection by flow cytometry demonstrated that KLK10 inhibition led to cell cycle arrest in the G1 phase. In addition, the proportion of M1 and M2 macrophages in 45 tumor specimens was analyzed by immunohistochemistry, the proportion of CD4+ T cells and CD8+ T cells in plasma was identified by flow cytometry, and their correlation with KLK10 was analyzed. The effects of KLK10 on T cells and macrophages were verified in independent cell experiments. The results revealed that KLK10 also activates CD4+ T cells, mediating M2-type macrophage polarization.


Subject(s)
CD8-Positive T-Lymphocytes , Colorectal Neoplasms , Humans , CD8-Positive T-Lymphocytes/metabolism , Colorectal Neoplasms/pathology , Kallikreins/genetics , Kallikreins/metabolism
10.
Exp Ther Med ; 26(5): 516, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37854499

ABSTRACT

Globally, liver cancer ranks among the most lethal cancers, with chemotherapy being one of its primary treatments. However, poor selectivity, systemic toxicity, a narrow treatment window, low response rate and multidrug resistance limit its clinical application. Liver-targeted nanoparticles (NPs) exhibit excellent targeted delivery ability and promising effectivity in treating liver cancer. The present study aimed to investigate the liver-targeting and anti-liver cancer effect of artesunate (ART)-loaded and glycyrrhetinic acid (GA)-decorated polyethylene glycol (PEG)-poly (lactic-co-glycolic acid) (PLGA) (ART/GA-PEG-PLGA) NPs. GA-coated NPs significantly increased hepatoma-targeted cellular uptake, with micropinocytosis and caveolae-mediated endocytosis as its chief internalization pathways. Moreover, ART/GA-PEG-PLGA NPs exhibited pro-apoptotic effects on HepG2 cells, mainly via the induction of a high level of reactive oxygen species, decline in mitochondrial membrane potential and induction of cell cycle arrest. Additionally, ART/GA-PEG-PLGA NPs induced internal apoptosis pathways by upregulating the activity of cleaved caspase-3/7 and expression of cleaved poly (ADP-Ribose)-polymerase and Phos-p38 mitogen-activated protein kinase in HepG2 cells. Furthermore, ART/GA-PEG-PLGA NPs exhibited higher liver accumulation and longer mean retention time, resulting in increased bioavailability. Finally, ART/GA-PEG-PLGA NPs promoted the liver-targeting distribution of ART, increased the retention time and promoted its antitumour effects in vivo. Therefore, ART/GA-PEG-PLGA NPs afforded excellent hepatoma-targeted delivery and anti-liver cancer efficacy, and thus, they may be a promising strategy for treating liver cancer.

SELECTION OF CITATIONS
SEARCH DETAIL