Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; 19(27): e2207784, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36974610

ABSTRACT

Perovskite solar cells (PSCs) with n-i-p structures often utilize an organic 2,2',7,7'-tetrakis (N, N-di-p-methoxyphenyl-amine) 9,9'-spirobifluorene (spiro-OMeTAD) along with additives of lithium bis(trifluoromethanesulfonyl)imide salt (LiTFSI) and tert-butylpyridine as the hole transporting layer (HTL). However, the HTL lacks stability in ambient air, and numerous defects are often present on the perovskite surface, which is not conducive to a stable and efficient PSC. Therefore, constructive strategies that simultaneously stabilize spiro-OMeTAD and passivate the perovskite surface are required. In this work, it is demonstrated that a novel ionic liquid of dimethylammonium bis(trifluoromethanesulfonyl)imide (DMATFSI) could act as a bifunctional HTL modulator in n-i-p PSCs. The addition of DMATFSI into spiro-OMeTAD can effectively stabilize the oxidized spiro-OMeTAD+ cation radicals through the formation of spiro-OMeTAD+ TFSI- because of the excellent charge delocalization of the conjugated CF3 SO2 - moiety within TFSI- . In addition, DMA+ cations could move toward the perovskite from the HTL, resulting in the passivation of defects at the perovskite surface. Accordingly, a power conversion efficiency of 23.22% is achieved for PSCs with DMATFSI and LiTFSI co-doped spiro-OMeTAD. Moreover, benefiting from the improved ion migration barrier and hydrophobicity of the HTL, still retained nearly 80% of their initial power conversion efficiency after 36 days of exposure to ambient air.

2.
RSC Adv ; 10(64): 38736-38745, 2020 Oct 21.
Article in English | MEDLINE | ID: mdl-35518393

ABSTRACT

As the most popular hole-transporting material (HTM), spiro-OMeTAD has been extensively applied in perovskite solar cells (PSCs). Unluckily, the pristine spiro-OMeTAD film has inferior conductivity and hole mobility, thus limiting its potential for application in high-performance PSCs. To ameliorate the electrical characteristics of spiro-OMeTAD, we employ 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) as a strong electron acceptor into spiro-OMeTAD in PSCs. The incorporation of DDQ with spiro-OMeTAD not only improves the conductivity and the Fermi energy level, but also reduces the trap states and nonradiative recombination, which accounts for the remarkable enhancement in both the fill factor (FF) and open-circuit voltage (V OC) of PSCs. Consequently, the champion PSC with DDQ doped hole transport layer (HTL) generates a boosted power conversion efficiency (PCE) of 21.16% with an FF of 0.796 and a V OC of 1.16 V. Remarkably, DDQ modified devices exhibit superb device stability, as well as mitigated hysteresis. This study provides a facile and viable strategy for dopant engineering of HTL to realize highly efficient PSCs.

SELECTION OF CITATIONS
SEARCH DETAIL