Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 372(6548)2021 06 18.
Article in English | MEDLINE | ID: mdl-34140356

ABSTRACT

Echolocation is the use of reflected sound to sense features of the environment. Here, we show that soft-furred tree mice (Typhlomys) echolocate based on multiple independent lines of evidence. Behavioral experiments show that these mice can locate and avoid obstacles in darkness using hearing and ultrasonic pulses. The proximal portion of their stylohyal bone fuses with the tympanic bone, a form previously only seen in laryngeally echolocating bats. Further, we found convergence of hearing-related genes across the genome and of the echolocation-related gene prestin between soft-furred tree mice and echolocating mammals. Together, our findings suggest that soft-furred tree mice are capable of echolocation, and thus are a new lineage of echolocating mammals.


Subject(s)
Echolocation , Rodentia/physiology , Animals , Biological Evolution , Bone and Bones/anatomy & histology , Chiroptera/anatomy & histology , Chiroptera/physiology , Genome , Hearing/genetics , Larynx/anatomy & histology , Larynx/physiology , Mammals/anatomy & histology , Mammals/genetics , Mammals/physiology , Rodentia/anatomy & histology , Rodentia/genetics , Sulfate Transporters/genetics , Temporal Bone/anatomy & histology
2.
Zool Res ; 41(6): 670-683, 2020 Nov 18.
Article in English | MEDLINE | ID: mdl-32918407

ABSTRACT

The interpretation of patterns of biodiversity requires the disentanglement of geographical and environmental variables. Disjunct alpine communities are geographically isolated from one another but experience similar environmental impacts. Isolated homogenous habitats may promote speciation but constrain functional trait variation. In this study, we examined the hypothesis that dispersal limitation promotes taxonomic divergence, whereas habitat similarity in alpine mountains leads to functional convergence. We performed standardized field investigation to sample non-volant small mammals from 18 prominent alpine sites in the Three Parallel Rivers area. We estimated indices quantifying taxonomic and functional alpha- and beta-diversity, as well as beta-diversity components. We then assessed the respective importance of geographical and environmental predictors in explaining taxonomic and functional compositions. No evidence was found to show that species were more functionally similar than expected in local assemblages. However, the taxonomic turnover components were higher than functional ones (0.471±0.230 vs. 0.243±0.215), with nestedness components showing the opposite pattern (0.063±0.054 vs. 0.269±0.225). This indicated that differences in taxonomic compositions between sites occurred from replacement of functionally similar species. Geographical barriers were the key factor influencing both taxonomic total dissimilarity and turnover components, whereas functional beta-diversity was primarily explained by climatic factors such as minimum temperature of the coldest month. Our findings provide empirical evidence that taxonomic and functional diversity patterns can be independently driven by different ecological processes. Our results point to the importance of clarifying different components of beta-diversity to understand the underlying mechanisms of community assembly. These results also shed light on the assembly rules and ecological processes of terrestrial mammal communities in extreme environments.


Subject(s)
Genome, Mitochondrial , Presbytini/genetics , Animal Distribution , Animals , Asia , DNA/genetics , Feces/chemistry , Female , Male , Phylogeny , Species Specificity
3.
Zool Res ; 40(1): 53-60, 2019 01 18.
Article in English | MEDLINE | ID: mdl-30581186

ABSTRACT

The distribution of small mammals in mountainous environments across different elevations can provide important information on the effects of climate change on the dispersal of species. However, few studies conducted on Afromontane ecosystems have compared the altitudinal patterns of small mammal diversity. We investigated the species diversity and abundance of non-volant small mammals (hereafter 'small mammals') on Mt. Kenya, the second tallest mountain in Africa, using a standard sampling scheme. Nine sampling transects were established at intervals of 200 m on the eastern (Chogoria) and western (Sirimon) slopes. A total of 1 905 individuals representing 25 species of small mammals were trapped after 12 240 trap-nights. Abundance was highest at mid-elevations on both slopes. However, species richness and distribution patterns differed between the two slopes. More species were recorded on Chogoria (24) than on Sirimon (17). On Chogoria, species richness was higher at mid-high elevations, with a peak at mid-elevation (2 800 m a.s.l.), whereas species richness showed little variation on the Sirimon slope. These results indicate that patterns of species diversity can differ between slopes on the same mountain. In addition, we extensively reviewed literature on Mt. Kenya's mammals and compiled a comprehensive checklist of 76 mammalian species. However, additional research is required to improve our understanding of small mammal diversity in mountain habitats in Africa.


Subject(s)
Animal Distribution , Biodiversity , Mammals , Altitude , Animals , Kenya , Population Density
4.
Zool Res ; 39(5): 321-334, 2018 Sep 18.
Article in English | MEDLINE | ID: mdl-29976842

ABSTRACT

Blarinellini is a tribe of soricine shrews comprised of nine fossil genera and one extant genus. Blarinelline shrews were once widely distributed throughout Eurasia and North America, though only members of the Asiatic short-tailed shrew genus Blarinella currently persist (mostly in southwestern China and adjacent areas). Only three forms of Blarinella have been recognized as either species or subspecies. However, recent molecular studies indicated a strikingly deep divergence within the genus, implying the existence of a distinct genus-level lineage. We sequenced the complete mitochondrial genomes and one nuclear gene of three Asiatic short-tailed and two North American shrews and analyzed them morphometrically and morphologically. Our molecular analyses revealed that specimens ascribed to B. griselda formed two deeply diverged lineages, one a close relative to B. quadraticauda, whereas the other - comprised of topotype specimens from southern Gansu - diverged from other Blarinella in the middle Miocene (ca. 18.2 million years ago (Ma), 95% confidence interval=13.4-23.6 Ma). Although the skulls were similarly shaped in both lineages, we observed several diagnostic characteristics, including the shape of the upper P4. In consideration of the molecular and morphological evidence, we recognize B. griselda as the sole species of a new genus, namely, Pantherina gen. nov. Interestingly, some characteristics of Pantherina griselda are more similar to fossil genera, suggesting it represents an evolutionarily more primitive form than Blarinella. Recognition of this new genus sheds light on the systematics and evolutionary history of the tribe Blarinellini throughout Eurasia and North America.


Subject(s)
Shrews/anatomy & histology , Animals , Biological Evolution , China , Mitochondria/genetics , North America , Sequence Analysis, DNA , Shrews/classification , Shrews/genetics , Skull/anatomy & histology
5.
Zool Res ; 39(5): 356-363, 2018 09 18.
Article in English | MEDLINE | ID: mdl-29616678

ABSTRACT

Gibbons and siamangs (Hylobatidae) are well-known for their rapid chromosomal evolution, which has resulted in high speciation rate within the family. On the other hand, distinct karyotypes do not prevent speciation, allowing interbreeding between individuals in captivity, and the unwanted hybrids are ethically problematic as all gibbon species are endangered or critically endangered. Thus, accurate species identification is crucial for captive breeding, particularly in China where studbooks are unavailable. Identification based on external morphology is difficult, especially for hybrids, because species are usually similar in appearance. In this study, we employed G-banding karyotyping and fluorescence in situ hybridization (FISH) as well as a PCR-based approach to examine karyotypic characteristics and identify crested gibbons of the genus Nomascus from zoos and nature reserves in China. We characterized and identified five karyotypes from 21 individuals of Nomascus. Using karyotypes and mitochondrial and nuclear genes, we identified three purebred species and three hybrids, including one F2 hybrid between N. gabriellae and N. siki. Our results also supported that N. leucogenys and N. siki shared the same inversion on chromosome 7, which resolves arguments from previous studies. Our results demonstrated that both karyotyping and DNA-based approaches were suitable for identifying purebred species, though neither was ideal for hybrid identification. The advantages and disadvantages of both approaches are discussed. Our results further highlight the importance of animal ethics and welfare, which are critical for endangered species in captivity.


Subject(s)
Hylobates/genetics , Animals , Animals, Zoo , Cell Nucleus/genetics , China , Endangered Species , Genes/genetics , Hylobates/classification , In Situ Hybridization, Fluorescence , Karyotype , Karyotyping , Mitochondria/genetics , Polymerase Chain Reaction
6.
Oncotarget ; 8(1): 1369-1391, 2017 Jan 03.
Article in English | MEDLINE | ID: mdl-27901495

ABSTRACT

The lung cancer incidence in the Xuanwei and neighboring region, Yunnan, China, is among the highest in China and is attributed to severe air pollution with high benzo(a)pyrene levels. We systematically and comparatively analyzed DNA methylation alterations at genome and gene levels in Xuanwei lung cancer tissues and cell lines, as well as benzo(a)pyrene-treated cells and mouse samples. We obtained a comprehensive dataset of genome-wide cytosine-phosphate-guanine island methylation in air pollution-related lung cancer samples. Benzo(a)pyrene exposure induced multiple alterations in DNA methylation and in mRNA expressions of DNA methyltransferases and ten-11 translocation proteins; these alterations partially occurred in Xuanwei lung cancer. Furthermore, benzo(a)pyrene-induced DKK2 and EN1 promoter hypermethylation and LPAR2 promoter hypomethylation led to down-regulation and up-regulation of the genes, respectively; the down-regulation of DKK2 and EN1 promoted the cellular proliferation. Thus, DNA methylation alterations induced by benzo(a)pyrene contribute partially to abnormal DNA methylation in air pollution-related lung cancer, and these DNA methylation alterations may affect the development and progression of lung cancer. Additionally, vitamin C and B6 can reduce benzo(a)pyrene-induced DNA methylation alterations and may be used as chemopreventive agents for air pollution-related lung cancer.


Subject(s)
Air Pollution/adverse effects , DNA Methylation , Lung Neoplasms/etiology , Lung Neoplasms/genetics , Animals , Anticarcinogenic Agents/pharmacology , Ascorbic Acid/pharmacology , Benzo(a)pyrene/administration & dosage , Benzo(a)pyrene/toxicity , Cell Line, Tumor , Humans , Mice , Mice, Inbred BALB C , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Vitamin B 6/pharmacology
7.
EBioMedicine ; 2(6): 583-90, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26288819

ABSTRACT

Air pollution has been classified as Group 1 carcinogenic to humans, but the underlying tumorigenesis remains unclear. In Xuanwei City of Yunnan Province, the lung cancer incidence is among the highest in China attributed to severe air pollution generated by combustion of smoky coal, providing a unique opportunity to dissect lung carcinogenesis of air pollution. Here we analyzed the somatic mutations of 164 non-small cell lung cancers (NSCLCs) from Xuanwei and control regions (CR) where smoky coal was not used. Whole genome sequencing revealed a mean of 289 somatic exonic mutations per tumor and the frequent C:G â†’ A:T nucleotide substitutions in Xuanwei NSCLCs. Exome sequencing of 2010 genes showed that Xuanwei and CR NSCLCs had a mean of 68 and 22 mutated genes per tumor, respectively (p < 0.0001). We found 167 genes (including TP53, RYR2, KRAS, CACNA1E) which had significantly higher mutation frequencies in Xuanwei than CR patients, and mutations in most genes in Xuanwei NSCLCs differed from those in CR cases. The mutation rates of 70 genes (e.g., RYR2, MYH3, GPR144, CACNA1E) were associated with patients' lifetime benzo(a)pyrene exposure. This study uncovers the mutation spectrum of air pollution-related lung cancers, and provides evidence for pollution exposure-genomic mutation relationship at a large scale.


Subject(s)
Air Pollutants/adverse effects , Air Pollution/adverse effects , Benzo(a)pyrene/adverse effects , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/genetics , Aged , Base Sequence , Carcinoma, Non-Small-Cell Lung/chemically induced , Cell Transformation, Neoplastic , Coal/adverse effects , Environmental Exposure/adverse effects , Female , Gene Frequency/genetics , Genome/genetics , Humans , Lung Neoplasms/chemically induced , Male , Middle Aged , Mutation/genetics , Mutation Rate , Sequence Analysis, DNA , Smoke/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL
...