Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
1.
World J Clin Cases ; 12(18): 3629-3635, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38983401

ABSTRACT

BACKGROUND: The midpoint transverse process to pleura (MTP) block, a novel technique for thoracic paravertebral block (TPVB), was first employed in laparoscopic renal cyst decortication. CASE SUMMARY: Thoracic paravertebral nerve block is frequently employed for perioperative analgesia during laparoscopic cyst decortication. To address safety concerns associated with TPVBs, we administered MTP blocks in two patients prior to administering general anesthesia for laparoscopic cyst decortication. The MTP block was performed at the T9 level under ultrasound guidance, with 20 mL of 0.5% ropivacaine injected. Reduced sensation to cold and pinprick was observed from the T8 to T11 dermatome levels. Immediately postoperative Numeric Pain Rating Scale scores were 0/10 at rest and on movement, with none exceeding a mean 24 h numeric rating scale > 3. CONCLUSION: MTP block was effective technique for providing postoperative analgesia for patients undergoing laparoscopic renal cyst decortication.

2.
Plant J ; 119(2): 796-813, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38733630

ABSTRACT

Skin color is an important trait that determines the cosmetic appearance and quality of fruits. In cucumber, the skin color ranges from white to brown in mature fruits. However, the genetic basis for this important trait remains unclear. We conducted a genome-wide association study of natural cucumber populations, along with map-based cloning techniques, on an F2 population resulting from a cross between Pepino (with yellow-brown fruit skin) and Zaoer-N (with creamy fruit skin). We identified CsMYB60 as a candidate gene responsible for skin coloration in mature cucumber fruits. In cucumber accessions with white to pale yellow skin color, a premature stop mutation (C to T) was found in the second exon region of CsMYB60, whereas light yellow cucumber accessions exhibited splicing premature termination caused by an intronic mutator-like element insertion in CsMYB60. Transgenic CsMYB60c cucumber plants displayed a yellow-brown skin color by promoting accumulation of flavonoids, especially hyperoside, a yellow-colored flavonol. CsMYB60c encodes a nuclear protein that primarily acts as a transcriptional activator through its C-terminal activation motif. RNA sequencing and DNA affinity purification sequencing assays revealed that CsMYB60c promotes skin coloration by directly binding to the YYTACCTAMYT motif in the promoter regions of flavonoid biosynthetic genes, including CsF3'H, which encodes flavonoid 3'-hydroxylase. The findings of our study not only offer insight into the function of CsMYB60 as dominantly controlling fruit coloration, but also highlight that intronic DNA mutations can have a similar phenotypic impact as exonic mutations, which may be valuable in future cucumber breeding programs.


Subject(s)
Cucumis sativus , Flavonoids , Fruit , Gene Expression Regulation, Plant , Pigmentation , Plant Proteins , Transcription Factors , Cucumis sativus/genetics , Cucumis sativus/metabolism , Fruit/genetics , Fruit/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Flavonoids/metabolism , Pigmentation/genetics , Genome-Wide Association Study , Plants, Genetically Modified
3.
Poult Sci ; 103(6): 103748, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38670057

ABSTRACT

The objective of this study was to investigate the effect of feeding behavior on feed intake and body weight in growing layers and the underlying mechanisms, thereby providing a scientific foundation for optimal feeding practices in growing layers' management. A total of 144 Hy-line brown growing layers of 10 wk old and similar body weight, were divided into 3 treatment groups with different feeding frequency and equal cumulative daily feeding amount: the once-a-day feeding group (F1) was fed at 9:00 am every day, with feeding amount of 150 g/layer; the twice-a-day feeding group (F2) were fed at 9:00 am and 13:00 pm every day, with each feeding amount of 75 g/layer; the 4 times-a-day feeding group (F4) were fed at 9:00 am, 11:00 am, 13:00 pm, and 15:00 pm every day, with each feeding amount of 37.5 g/layer. Pre-experiment lasted for 1 wk and formal experiment lasted for 8 wk. The results indicated that the daily feed intake and body weight were decreased (P < 0.05) while feed conversion ratio was not affected (P > 0.05) as daily feeding times increased. The glandular stomach proportion was significantly increased in twice-a-day feeding group, while liver proportion and ileum length were significantly increased in 4 times-feeding group (P < 0.05). Additionally, 4 times-feeding daily resulted in a significant elevation of blood glucose levels, which may have suppressed feed intake (P < 0.05). In 4 times-feeding group, the plasma triglyceride levels increased as feeding times, accompanied by a notable up-regulation in the mRNA level of appetite-suppressing gene, hypothalamic pro-opiomelanocortin (POMC) and glandular stomach ghrelin. This modulation effectively suppressed the subsequent feed intake and body weight. Therefore, 4 times feeding daily is recommended in growing layers' management, because it reduced the feed cost without affecting the feed conversion efficiency.


Subject(s)
Body Weight , Chickens , Eating , Feeding Behavior , Animals , Eating/physiology , Female , Chickens/physiology , Chickens/growth & development , Animal Husbandry/methods , Animal Feed/analysis , Random Allocation
4.
BMC Infect Dis ; 23(1): 530, 2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37580651

ABSTRACT

BACKGROUND: Invasive candidiasis is the most common hospital-acquired fungal infection in intensive care units (ICU). The Geriatric Nutritional Risk Index (GNRI) score was developed to evaluate the nutritional status of elderly adults. We aimed to assess the association between the GNRI score and the risk of invasive candidiasis in elderly patients admitted to ICU. METHODS: Hospitalization information of elderly patients with invasive candidiasis was collected retrospectively from Medical Information Mart for Intensive Care (MIMIC) IV and MIMIC-III Clinical Database CareVue subset from 2001 to 2019. The main outcome of this study was the diagnosis of invasive candidiasis in patients. We employed a multivariable Cox regression and propensity score matching to balance the influence of confounding factors on the outcome. Furthermore, we conducted sensitivity analyses by categorizing the GNRI into classes based on thresholds of 98, 92, and 81. RESULTS: A total of 6739 patients were included in the study, among whom 134 individuals (2%) were diagnosed with invasive candidiasis. The GNRI scores of patients with invasive candidiasis upon admission to the ICU were significantly lower, measuring 88.67 [79.26-98.27], compared to the control group with a score of 99.36 [87.98-110.45] (P < 0.001). The results of the multivariable Cox regression analysis demonstrated a strong association between higher GNRI scores and a decreased risk of invasive candidiasis infection (HR: 0.98, 95% CI: 0.97-0.99, P = 0.002). Consistently, similar results were obtained when analyzing the propensity score-matched cohort (HR: 0.99, 95% CI: 0.98-1, P = 0.028). Sensitivity analyses further confirmed a significantly increased risk of invasive candidiasis infection with lower GNRI scores. Specifically, the following associations were observed: GNRI ≤ 98 (HR: 1.83, 95% CI: 1.23-2.72, P = 0.003), GNRI ≤ 92 (HR: 1.68, 95% CI: 1.17-2.4, P = 0.005), 82 ≤ GNRI ≤ 92 (HR: 1.63, 95% CI: 1.01-2.64, P = 0.046), GNRI ≤ 81 (HR: 2.31, 95% CI: 1.44-3.69, P < 0.001). CONCLUSIONS: Lower GNRI score was significantly associated with an increased risk of invasive candidiasis in elderly patients in ICU. Further research is needed to validate whether improving nutrition can prevent invasive candidiasis.


Subject(s)
Candidiasis, Invasive , Malnutrition , Humans , Aged , Malnutrition/complications , Nutrition Assessment , Retrospective Studies , Critical Illness , Nutritional Status , Candidiasis, Invasive/epidemiology , Risk Factors
5.
J Transl Med ; 21(1): 498, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37491256

ABSTRACT

BACKGROUND: Insulin has been reported to exhibit anti-inflammatory activities in the context of bowel inflammation. However, the role of the interaction between insulin and the microbiota in gut health is unclear. Our goal was to investigate the mechanism of action of insulin in bowel inflammation and the relationship between insulin and the gut microbiota. METHODS: We used acute and chronic murine models of inflammatory bowel disease (IBD) to evaluate whether insulin influences the progression of colitis. Colonic tissues, the host metabolome and the gut microbiome were analyzed to investigate the relationship among insulin treatment, the microbiome, and disease. Experiments involving antibiotic (Abx) treatment and fecal microbiota transplantation (FMT) confirmed the association among the gut microbiota, insulin and IBD. In a series of experiments, we further defined the mechanisms underlying the anti-inflammatory effects of insulin. RESULTS: We found that low-dose insulin treatment alleviated intestinal inflammation but did not cause death. These effects were dependent on the gut microbiota, as confirmed by experiments involving Abx treatment and FMT. Using untargeted metabolomic profiling and 16S rRNA sequencing, we discovered that the level of the secondary bile acid lithocholic acid (LCA) was notably increased and the LCA levels were significantly associated with the abundance of Blautia, Enterorhadus and Rumi-NK4A214_group. Furthermore, LCA exerted anti-inflammatory effects by activating a G-protein-coupled bile acid receptor (TGR5), which inhibited the polarization of classically activated (M1) macrophages. CONCLUSION: Together, these data suggest that insulin alters the gut microbiota and affects LCA production, ultimately delaying the progression of IBD.


Subject(s)
Colitis , Gastrointestinal Microbiome , Inflammatory Bowel Diseases , Mice , Humans , Animals , Insulin , RNA, Ribosomal, 16S/genetics , Colitis/drug therapy , Inflammatory Bowel Diseases/drug therapy , Inflammation , Gastrointestinal Microbiome/genetics , Bile Acids and Salts , Receptors, G-Protein-Coupled , Anti-Inflammatory Agents , Mice, Inbred C57BL
6.
Cell Oncol (Dordr) ; 46(6): 1731-1746, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37402945

ABSTRACT

PURPOSE: MicroRNA-146b (miR-146b) alleviates experimental colitis in mice by mediating macrophage polarization and the release of inflammatory factors. Our goals were to evaluate the antitumor efficacy of miR-146b in colorectal cancer (CRC) and to investigate the underlying mechanisms. METHODS: We used murine models of CRC to evaluate whether miR-146b influenced the progression of tumors independent of tumor-associated macrophages (TAMs). RNA immunoprecipitation, N6-methyladenosine (m6A) RNA immunoprecipitation and in vitro pri-miRNA processing assays were conducted to examine whether m6A mediates the maturation of pri-miR-146b/miR-146b. In a series of in vitro and in vivo experiments, we further defined the molecular mechanisms of methyltransferase-like 3 (METTL3)/miR-146b-mediated antitumor immunity and its efficacy in combination with anti-PD-1 immunotherapy. RESULTS: We found that miR-146b deletion supported tumor progression by increasing the number of alternatively activated (M2) TAMs. Mechanistically, the m6A-related "writer" protein METTL3 and "reader" protein HNRNPA2B1 controlled miR-146b maturation by regulating the m6A modification region of pri-miR-146b. Furthermore, miR-146b deletion promoted the polarization of M2-TAMs by enhancing phosphoinositide 3-kinase (PI3K)/AKT signaling, and this effect was mediated by the class IA PI3K catalytic subunit p110ß, which reduced T cell infiltration, aggravated immunosuppression and ultimately promoted tumor progression. METTL3 knockdown or miR-146b deletion induced programmed death ligand 1 (PD-L1) production via the p110ß/PI3K/AKT pathway in TAMs and consequently augmented the antitumor activity of anti-PD-1 immunotherapy. CONCLUSIONS: The maturation of pri-miR-146b is m6A-dependent, and miR-146b deletion-mediated TAM differentiation promotes the development of CRC by activating the PI3K/AKT pathway, which induces upregulation of PD-L1 expression, inhibits T cell infiltration into the TME and enhances the antitumor activity of anti-PD-1 immunotherapy. The findings reveal that targeting miR-146b can serve as an adjuvant to anti-PD-1 immunotherapy.


Subject(s)
Colorectal Neoplasms , MicroRNAs , Animals , Mice , Tumor-Associated Macrophages/metabolism , B7-H1 Antigen/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Macrophages/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Colorectal Neoplasms/metabolism
7.
mBio ; 13(2): e0368821, 2022 04 26.
Article in English | MEDLINE | ID: mdl-35266816

ABSTRACT

Interleukin-17 (IL-17) is associated with nonalcoholic fatty liver disease (NAFLD) and gut microbiota, and how IL-17 mediates the NAFLD/nonalcoholic steatohepatitis (NASH) process depending on the gut microbiota is unclear. We found that T helper 17 (TH17) cells were decreased in the small intestine in a methionine choline-deficient (MCD) diet-induced NASH model. IL-17-deficient (Il17-/-) mice showed alterations in intestinal microbiota, including the inhibition of probiotic growth and the overgrowth of certain pathogenic bacteria, and were prone to higher endotoxemia levels and more severe gastrointestinal barrier defects than wild-type (WT) mice. Furthermore, TH17 cells were responsible for restoring the intestinal barrier after administration of recombinant IL-17 to Il17-/- mice or injection of CD4+ T cells into a Rag1-/- mouse model. Additionally, transplantation of the microbiota from WT mice to Il17-/- mice restored the intestinal barrier. Notably, microbiota-depleted Il17-/- mice were resistant to MCD diet-induced intestinal barrier impairment. Fecal microbiota transplantation from Il17-/- mice to microbiota-depleted mice aggravated intestinal barrier impairment and then promoted the development of NASH. Collectively, this study showed that host IL-17 could strengthen intestinal mucosal barrier integrity and reduce dysbiosis-induced intestinal injury and secondary extraintestinal organ injury induced by a special diet. IMPORTANCE The morbidity of NASH has increased, with limited effective treatment options. IL-17 plays a protective role in the gut mucosa in high-fat-diet (HFD)-related metabolic disorders, and HFD-related microbiota dysbiosis is responsible for a decreased number of T helper 17 (TH17) cells in the lamina propria. The mechanism by which IL-17 mediates the NAFLD/NASH process depending on the gut microbiota is unclear. In our study, IL-17 originating from TH17 cells maintained intestinal barrier integrity and determined the outcomes of diet-related disease, which may be a target strategy for NAFLD/NASH.


Subject(s)
Gastrointestinal Microbiome , Interleukin-17/metabolism , Non-alcoholic Fatty Liver Disease , Animals , Diet, High-Fat , Dysbiosis/microbiology , Methionine/pharmacology , Mice , Non-alcoholic Fatty Liver Disease/microbiology
8.
J Org Chem ; 87(7): 4712-4723, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35275485

ABSTRACT

An efficient cobalt-catalyzed geometrical isomerization of 1,3-dienes is described. In the combination of a CoCl2 precatalyst with an amido-diphosphine-oxazoline ligand, the geometrical isomerization of E/Z mixtures of 1,3-dienes proceed in a stereoconvergent manner, affording (E) isomers in high stereoselectivity. This facile transformation features a broad substrate scope with good functional group tolerance and could be scaled up to the gram scale smoothly with a catalyst loading of 1 mol %.


Subject(s)
Cobalt , Polyenes , Catalysis , Isomerism
9.
Endocr J ; 69(1): 55-65, 2022 Jan 28.
Article in English | MEDLINE | ID: mdl-34408100

ABSTRACT

Obesity, closely related to systematic metabolic disorders, has become a major public health problem in recent decades. Here, we aimed to study the function of Parathyroid hormone-related protein (PTHrP) on high fat diet (HFD) induced murine obesity. Male C57BL/6J mice were transduced with adeno-associated virus vector encoding PTHrP (AAV-PTHrP) or adeno-associated virus control vector (AAV-Vehicle), following with HFD for 8 weeks. In addition, mice without transduction were fed on normal diet or HFD, respectively. Histological, metabolic and biochemical changes were detected. At the endpoint of experiment, body weight of mice treated with AAV-PTHrP did not increase as much as mice with AAV-Vehicle, but similar as mice with normal diet. Food efficiency ratio and weight of interscapular brown adipose tissue and epididymal white adipose tissue in mice overexpressed PTHrP were also lower than mice transducted with AAV-Vehicle. Besides, administration of AAV-PTHrP inhibited HFD-induced adipocyte hypertrophy. Protein level of PKA signaling pathway and thermogenic gene in adipose tissue exhibited a significant raise in HFD + AAV-PTHrP group, whereas transcription of inflammatory gene were decreased. Additionally, PTHrP overexpression ameliorated HFD-induced dyslipidemia, hepatic steatosis and insulin sensitivity. In HFD-induced murine obesity model, PTHrP is crucial to maintain metabolic homeostasis. PTHrP drives white adipose tissue browning and inhibits whitening of brown adipose tissue. Most importantly, PTHrP prevented HFD-induced obesity, hepatic steatosis and insulin resistance.


Subject(s)
Diet, High-Fat , Insulin Resistance , Adipose Tissue, Brown/pathology , Animals , Male , Mice , Mice, Inbred C57BL , Obesity/genetics , Obesity/prevention & control , Parathyroid Hormone-Related Protein/genetics , Parathyroid Hormone-Related Protein/metabolism
10.
Mol Biol Cell ; 32(19): 1849-1866, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34232706

ABSTRACT

The small ubiquitin-related modifiers (SUMOs) regulate nearly every aspect of cellular function, from gene expression in the nucleus to ion transport at the plasma membrane. In humans, the SUMO pathway has five SUMO paralogues with sequence homologies that range from 45% to 97%. SUMO1 and SUMO2 are the most distantly related paralogues and also the best studied. To what extent SUMO1, SUMO2, and the other paralogues impart unique and nonredundant effects on cellular functions, however, has not been systematically examined and is therefore not fully understood. For instance, knockout studies in mice have revealed conflicting requirements for the paralogues during development and studies in cell culture have relied largely on transient paralogue overexpression or knockdown. To address the existing gap in understanding, we first analyzed SUMO paralogue gene expression levels in normal human tissues and found unique patterns of SUMO1-3 expression across 30 tissue types, suggesting paralogue-specific functions in adult human tissues. To systematically identify and characterize unique and nonredundant functions of the SUMO paralogues in human cells, we next used CRISPR-Cas9 to knock out SUMO1 and SUMO2 expression in osteosarcoma (U2OS) cells. Analysis of these knockout cell lines revealed essential functions for SUMO1 and SUMO2 in regulating cellular morphology, promyelocytic leukemia (PML) nuclear body structure, responses to proteotoxic and genotoxic stress, and control of gene expression. Collectively, our findings reveal nonredundant regulatory roles for SUMO1 and SUMO2 in controlling essential cellular processes and provide a basis for more precise SUMO-targeting therapies.


Subject(s)
Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic , SUMO-1 Protein/genetics , Small Ubiquitin-Related Modifier Proteins/genetics , Ubiquitins/genetics , CRISPR-Cas Systems/genetics , Cell Line, Tumor , Cell Survival/genetics , Gene Knockout Techniques , Gene Ontology , Humans , Immunoblotting/methods , Microscopy, Fluorescence/methods , Reverse Transcriptase Polymerase Chain Reaction/methods , SUMO-1 Protein/metabolism , Small Ubiquitin-Related Modifier Proteins/metabolism , Ubiquitins/metabolism
11.
Bioinformatics ; 37(22): 4251-4252, 2021 11 18.
Article in English | MEDLINE | ID: mdl-34042972

ABSTRACT

MOTIVATION: Cell-free DNA (cfDNA) is gaining substantial attention from both biological and clinical fields as a promising marker for liquid biopsy. Many aspects of disease-related features have been discovered from cfDNA high-throughput sequencing (HTS) data. However, there is still a lack of integrative and systematic tools for cfDNA HTS data analysis and quality control (QC). RESULTS: Here, we propose cfDNApipe, an easy-to-use and systematic python package for cfDNA whole-genome sequencing (WGS) and whole-genome bisulfite sequencing (WGBS) data analysis. It covers the entire analysis pipeline for the cfDNA data, including raw sequencing data processing, QC and sophisticated statistical analysis such as detecting copy number variations (CNVs), differentially methylated regions and DNA fragment size alterations. cfDNApipe provides one-command-line-execution pipelines and flexible application programming interfaces for customized analysis. AVAILABILITY AND IMPLEMENTATION: https://xwanglabthu.github.io/cfDNApipe/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Cell-Free Nucleic Acids , Sequence Analysis, DNA , DNA Copy Number Variations , High-Throughput Nucleotide Sequencing , Quality Control
12.
Invest New Drugs ; 39(5): 1222-1231, 2021 10.
Article in English | MEDLINE | ID: mdl-33788074

ABSTRACT

Many studies have indicated that histone deacetylase inhibitors (HDACis) have a significant antitumor effect in cancer. Here we report a compound named LT-548-133-1 that not only acts as an HDAC inhibitor but also interferes with microtubule assembly to inhibit MCF-7 cell proliferation and induce apoptosis. Consistent with Chidamide, LT-548-133-1 inhibited HDAC activity and increased histone H3 acetylation. But the difference is that it significantly induced cell cycle G2/M arrest while Chidamide caused G0/G1 arrest in MCF-7 cells. By Western blotting, we found the accumulation of CyclinB1 and phosphorylated histone H3 in LT-548-133-1 treated cells. Immunofluorescence based microtubule-repolymerization experiments and immunofluorescence staining of cell microtubules and nuclei showed that LT-548-133-1inhibited microtubule-repolymerization and induced mitotic abnormalities. The decreased expression of Bcl-2 and the increased expression of Bax, p53, p21, and cleaved-Caspase3 indicated the occurrence of apoptosis. Flow cytometry results also showed an increase in the proportion of apoptotic cells after administration of LT-548-133-1 or Chidamide. Therefore, we demonstrated that LT-548-133-1 could act as an HDAC inhibitor while inhibiting microtubule-repolymerization, causing mitosis to be arrested in G2/M. These two effects ultimately lead to proliferation inhibition and apoptosis of MCF-7 cells.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Histone Deacetylase Inhibitors/pharmacology , Acetylation/drug effects , Aminopyridines/pharmacology , Benzamides/pharmacology , Cell Survival/drug effects , Cellular Reprogramming Techniques , G2 Phase Cell Cycle Checkpoints/drug effects , Humans , MCF-7 Cells , Microtubules/drug effects , Proto-Oncogene Proteins c-bcl-2/drug effects
13.
Eur J Pharmacol ; 892: 173778, 2021 Feb 05.
Article in English | MEDLINE | ID: mdl-33271153

ABSTRACT

Low molecular weight heparin is a Heparin derivative, produced from commercial-grade Heparin through Chemical or enzymatic depolymerization. LMWH has remained a favored regimen for anticoagulation in cancer patients. Evidence from several studies has suggested that LMWHs possess antitumor and antimetastatic activity aside from their anticoagulant activity. Cancer metastasis is the foremost reason for cancer-related motility rate. Studies have pointed out that adhesion molecules play a decisive role in enhancing recurrent, invasive, and distant metastasis. Therefore, it is hypothesized that Cell adhesion molecules can be determined as a potential therapeutic target group, as antibodies or small-molecule inhibitors could easily access their extracellular domains. Furthermore, data from several investigations have reported LWMH potential effects as antimetastatic agents through influencing cell adhesion molecules. This review's objective is to emphasize the evidence available for the effects of the LMWHs in cell adhesion to inhibit tumor metastasis.


Subject(s)
Antineoplastic Agents/pharmacology , Cell Adhesion Molecules/metabolism , Cell Adhesion/drug effects , Cell Movement/drug effects , Heparin, Low-Molecular-Weight/pharmacology , Neoplasms/drug therapy , Animals , Humans , Neoplasm Invasiveness , Neoplasm Metastasis , Neoplasms/metabolism , Neoplasms/pathology , Signal Transduction
14.
Artif Cells Nanomed Biotechnol ; 47(1): 1984-1994, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31311343

ABSTRACT

Recently, we showed that parathyroid hormone-like hormone (PTHLH), a cytokine-like polyprotein, is critical for extracellular matrix (ECM) deposition through the activation of hepatic stellate cells (HSCs). Here, we show that N-terminal PTHLH is secreted into the supernatant of injured hepatocytes, its expression is positively correlated with liver fibrosis severity based on mice liver biopsies, and it is primarily expressed in the cytoplasm of hepatocytes along the fibrous septa of fibrotic livers. PTHLH overexpression in mice was achieved through adeno-associated virus-mediated gene delivery (AAV9-PTHLH), and liver fibrosis was induced with carbon tetrachloride (CCl4). We observed that AAV9-PTHLH induced spontaneous development of liver fibrosis and increased sensitivity to CCl4. PTHLH increased Hedgehog (Hh) pathway activation in a PTH1R-dependent manner, and the effect of PTHLH was primarily mediated by protein kinase C (PKC) θ. PTHLH-mediated PTH1R-PKC θ pathway activation is a key event in the profibrotic Hh-dependent activation of HSCs.


Subject(s)
Hedgehog Proteins/metabolism , Hepatic Stellate Cells/pathology , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Parathyroid Hormone-Related Protein/metabolism , Signal Transduction , Animals , Hepatic Stellate Cells/metabolism , Male , Protein Kinase C-theta/metabolism , Rats , Rats, Sprague-Dawley , Receptor, Parathyroid Hormone, Type 1/metabolism , Up-Regulation
15.
J Crohns Colitis ; 13(4): 482-494, 2019 Mar 30.
Article in English | MEDLINE | ID: mdl-30445446

ABSTRACT

BACKGROUND AND AIMS: Macrophages are a promising therapeutic target for intestinal mucosal repair. MiR-146b appears to control macrophage activation and cell proliferation. METHODS: By loading miR-146b mimic on mannose-modified trimethyl chitosan [MTC]-conjugated nanoparticles [NPs] [MTC-miR146b], a molecular targeted immunotherapeutic approach was developed to selectively target intestinal macrophages for mucosal regeneration and tumourigenesis in mouse models. RESULTS: We first confirmed that miR-146b expression was significantly enhanced during mucosal regeneration in a murine colitis model. Moreover, after mucosal damage, MTC-miR146b mimic-treated wild-type mice had dramatically restored body weight and mucosal barrier function compared with MTC-NC treated mice. Strikingly, MTC-miR146b mimic oral administration protected miR-146b-deficient mice from dextran sodium sulphate [DSS] injury and the colitis-associated cancer process. Mechanistically, miR-146b strongly inhibited M1 macrophage activation by suppressing the Toll-like receptor 4 [TLR4] signalling pathway, resulting in the repression of the induction of pro-inflammatory cytokines including TNF-α, IL-6, and IL-1ß. More importantly, miR-146b overexpression in bone marrow-derived macrophages [BMDMs] in M1 differentiation conditions induced a phenotype similar to M2 macrophages and improved the proliferation of co-cultured colonic epithelial cells via STAT3-dependent IL-10 production. CONCLUSIONS: MTC-miR146b should be regarded as an effective candidate for oral delivery and could improve the efficacy of immunotherapies for ulcerative colitis and colitis-associated cancer.


Subject(s)
Colitis/drug therapy , Immunotherapy/methods , Intestinal Mucosa/physiopathology , Macrophages/physiology , MicroRNAs/therapeutic use , Molecular Targeted Therapy/methods , Administration, Oral , Animals , Body Weight/drug effects , Carcinogenesis/drug effects , Cell Proliferation/drug effects , Colitis/chemically induced , Colitis/pathology , Colitis/prevention & control , Colitis, Ulcerative/drug therapy , Dextran Sulfate , Disease Models, Animal , Interleukin-10/metabolism , Intestinal Mucosa/immunology , Macrophage Activation/drug effects , Male , Mice , MicroRNAs/administration & dosage , MicroRNAs/genetics , Nanoparticles/therapeutic use , Phenotype , Regeneration/drug effects , STAT3 Transcription Factor/metabolism , Signal Transduction/drug effects , Toll-Like Receptor 4/antagonists & inhibitors
16.
Molecules ; 23(7)2018 Jul 18.
Article in English | MEDLINE | ID: mdl-30021958

ABSTRACT

A wide range of diseases have been treated using low-molecular-weight heparins (LMWHs), the drug of choice for anticoagulation. Owing to their better pharmacokinetic features compared to those of unfractionated heparin (uFH), several systems incorporating LMWHs have been investigated to deliver and improve their therapeutic outcomes, especially through development of their micro- and nano-particles. This review article describes current perspectives on the fabrication, characterization, and application of LMWHs-loaded micro- and nano-particles to achieve ameliorated bioavailability. The valuable applications of LMWH will continue to encourage researchers to identify efficient delivery systems that have specific release characteristics and ameliorated bioavailability, overcoming the challenges presented by biological obstructions and the physicochemical properties of LMWHs.


Subject(s)
Heparin, Low-Molecular-Weight/chemistry , Heparin, Low-Molecular-Weight/therapeutic use , Nanoparticles/chemistry , Nanoparticles/therapeutic use , Animals , Humans , Particle Size
17.
Artif Cells Nanomed Biotechnol ; 46(sup2): 217-228, 2018.
Article in English | MEDLINE | ID: mdl-29560749

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is one of the most common chronic liver diseases worldwide, and precision therapeutic will be a benefit for the NAFLD regression. In this study, we observed low microRNA 146 b (miR-146 b) expression in NAFLD mice model induced by methionine-choline-deficient diet (MCD) compared with control group. Furthermore, miR-146b-/- mice induced MCD exhibited severe liver steatosis and hepatitis. A bio-distribution study showed that novel Lactosylated PDMAEMA nanoparticles effectively targeted hepatocytes Lac-PDMAEMA. We coupled miR-146b mimic with Lac-PDMAEMA and then were administrated to NAFLD mice model, which could obviously alleviate the hepatic steatosis. Lac-PDMAEMA effectively delivered miR-146b mimic to hepatocytes with a ∼8-fold upregulation of miR-146b mimic targeting MyD88 and IRAK1, and in turn suppressed the expression of PPARγ. Meanwhile, TNF-α and IL-6 mRNA levels were decreased after administration of Lac-PDMAEMA/miR-146b mimic. So, we made a conclusion that targeted delivering miR-146b mimic to the hepatocytes by, coupling Lac-PDMAEMA nanoparticles could effectively alleviate the hepatic steatosis in NAFLD mice, which maybe bring a new and effective way to intervene and therapy the NAFLD.


Subject(s)
Biomimetic Materials/pharmacology , Hepatocytes/metabolism , Lactose/chemistry , Methacrylates/chemistry , MicroRNAs/genetics , Nanoparticles/chemistry , Non-alcoholic Fatty Liver Disease/therapy , Nylons/chemistry , Adipogenesis/genetics , Animals , Biomimetic Materials/chemistry , Down-Regulation/drug effects , Down-Regulation/genetics , Drug Carriers/chemistry , Female , Hepatocytes/drug effects , Interleukin-1 Receptor-Associated Kinases/metabolism , Lipid Droplets/metabolism , Liver Cirrhosis/genetics , Mice , Mice, Inbred C57BL , MicroRNAs/chemistry , Myeloid Differentiation Factor 88/metabolism , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology
18.
Am J Pathol ; 188(6): 1374-1388, 2018 06.
Article in English | MEDLINE | ID: mdl-29577935

ABSTRACT

Epithelial-to-mesenchymal transition (EMT) is a key contributor to fibroblast activation in fibrosis of multiple organs, including the intestine. Parathyroid hormone-like hormone (PTHLH) is an important factor in renal fibrosis and regulates several processes, including EMT. Herein, we investigated the role of PTHLH-induced EMT in intestinal fibrosis associated with Crohn disease. The expression levels of the EMT-related proteins, PTHLH, and parathyroid hormone receptor 1 (PTH1R) in intestinal tissues were determined by immunohistochemistry, and our results revealed that PTHLH and PTH1R were significantly elevated and associated with EMT marker expression. Moreover, neutralizing PTH1R and antagonizing PTHLH bioactivity prevented transforming growth factor-ß1-induced EMT. PTH1R can propagate the protein kinase A (PKA) signal and activate downstream nuclear transcription factors, including runt-related transcription factor 2 (Runx2). In addition, lentiviral vector-PTHLH-treated mice were highly sensitive to 2,4,6-trinitrobenzene sulfonic acid, and analysis of the PTHLH-PTH1R axis revealed the involvement of PKA-Runx2 in PTHLH-induced EMT. Our results indicate that PTHLH triggered EMT in intestinal epithelial cells through the PKA-Runx2 pathway, which might serve as a therapeutic target for intestinal fibrosis in Crohn disease.


Subject(s)
Core Binding Factor Alpha 1 Subunit/metabolism , Crohn Disease/pathology , Epithelial-Mesenchymal Transition , Intestinal Mucosa/pathology , Parathyroid Hormone-Related Protein/metabolism , Receptor, Parathyroid Hormone, Type 1/metabolism , Adult , Animals , Case-Control Studies , Core Binding Factor Alpha 1 Subunit/genetics , Crohn Disease/genetics , Crohn Disease/metabolism , Female , Fibrosis/metabolism , Fibrosis/pathology , Humans , Intestinal Mucosa/metabolism , Male , Mice , Mice, Inbred BALB C , Parathyroid Hormone/metabolism , Parathyroid Hormone-Related Protein/genetics , Receptor, Parathyroid Hormone, Type 1/genetics , Signal Transduction , Transforming Growth Factor beta1/genetics , Transforming Growth Factor beta1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL