Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomedicine ; 51: 102683, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37105341

ABSTRACT

The creation of wound dressings with low drug resistance and broad-spectrum antibacterial capability is a key topic of scientific interest. To achieve this, a bactericidal wound dressing with the capacity to autocatalytically produce hydroxyl radicals (OH) was developed. The wound dressing was an electrospun PCL/gelatin/glucose composite fiber mesh (PGD) with functional iron-containing metal-organic framework (Fe-MOF) nanozymes. These functional nanozymes (G@Fe) were formed by coupling glucose oxidase (GOx) and Fe-MOF through amide bonds. These nanozymes enabled the conversion of glucose released from the PGD composite mesh into hydroxyl radicals via an autocatalytic cascade reaction to destroy bacteria. The antibacterial efficiency of wound dressings and their stimulation of tissue regeneration were assessed using a MRSA-infected skin wound infection model on the back of SD mice. The G@Fe/PGD wound dressing exhibited improved wound healing capacity and had comparable biosafety to commercial silver-containing dressings, suggesting a potential replacement in the future.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Wound Infection , Mice , Animals , Wound Healing , Bandages/microbiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Bacteria , Wound Infection/therapy , Glucose
2.
ACS Appl Mater Interfaces ; 8(16): 10212-9, 2016 04 27.
Article in English | MEDLINE | ID: mdl-27043792

ABSTRACT

Biocompatible, biodegradable, and luminescent nano material can be used as an alternative bioimaging agent for early cancer diagnosis, which is crucial to achieve successful treatment. Hydroxyapatite (HAP) nanocyrstals have good biocompatibility and biodegradability, and can be used as an excellent host for luminescent rare earth elements. In this study, based on the energy transfer from Gd(3+) to Eu(3+), the luminescence enhanced imaging agent of Eu/Gd codoping HAP (HAP:Eu/Gd) nanocrystals are obtained via coprecipitation with plate-like shape and no change in crystal phase composition. The luminescence can be much elevated (up to about 120%) with a nonlinear increase versus Gd doping content, which is due to the energy transfer ((6)PJ of Gd(3+) → (5)HJ of Eu(3+)) under 273 nm and the possible combination effect of the cooperative upconversion and the successive energy transfer under 394 nm, respectively. Results demonstrate that the biocompatible HAP:Eu/Gd nanocrystals can successfully perform cell labeling and in vivo imaging. The intracellular HAP:Eu/Gd nanocrystals display good biodegradability with a cumulative degradation of about 65% after 72 h. This biocompatible, biodegradable, and luminescence enhanced HAP:Eu/Gd nanocrystal has the potential to act as a fluorescent imaging agent in vitro and in vivo.


Subject(s)
Metal Nanoparticles , Cell Survival , Durapatite , Europium , Gadolinium , Humans , Luminescence
SELECTION OF CITATIONS
SEARCH DETAIL
...