Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
Emerg Microbes Infect ; 13(1): 2348505, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38686553

ABSTRACT

China, with the third largest share of global tuberculosis cases, faces a substantial challenge in its healthcare system as a result of the high burden of multidrug-resistant and rifampicin-resistant tuberculosis (MDR/RR-TB). This study employs a genomic epidemiological approach to assess recent tuberculosis transmissions between individuals, identifying potential risk factors and discerning the role of transmitted resistant isolates in the emergence of drug-resistant tuberculosis in China. We conducted a population-based retrospective study on 5052 Mycobacterium tuberculosis (MTB) isolates from 70 surveillance sites using whole genome sequencing (WGS). Minimum spanning tree analysis identified resistance mutations, while epidemiological data analysis pinpointed transmission risk factors. Of the 5052 isolates, 23% (1160) formed 452 genomic clusters, with 85.6% (387) of the transmissions occurring within the same counties. Individuals with younger age, larger family size, new cases, smear positive, and MDR/RR were at higher odds for recent transmission, while higher education (university and above) and occupation as a non-physical workers emerged as protective factors. At least 61.4% (251/409) of MDR/RR-TB were likely a result of recent transmission of MDR/RR isolates, with previous treatment (crude OR = 2.77), smear-positive (cOR = 2.07) and larger family population (cOR = 1.13) established as risk factors. Our findings highlight that local transmission remains the predominant form of TB transmission in China. Correspondingly, drug-resistant tuberculosis is primarily driven by the transmission of resistant tuberculosis isolates. Targeted interventions for high-risk populations to interrupt transmission within the country will likely provide an opportunity to reduce the prevalence of both tuberculosis and drug-resistant tuberculosis.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Whole Genome Sequencing , Humans , China/epidemiology , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/isolation & purification , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/classification , Male , Adult , Female , Middle Aged , Tuberculosis, Multidrug-Resistant/epidemiology , Tuberculosis, Multidrug-Resistant/transmission , Tuberculosis, Multidrug-Resistant/microbiology , Cross-Sectional Studies , Retrospective Studies , Young Adult , Risk Factors , Adolescent , Aged , Rifampin/pharmacology , Antitubercular Agents/pharmacology , Genome, Bacterial , Drug Resistance, Multiple, Bacterial
2.
Microorganisms ; 12(4)2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38674714

ABSTRACT

Mycobacterial membrane proteins play a pivotal role in the bacterial invasion of host cells; however, the precise mechanisms underlying certain membrane proteins remain elusive. Mycolicibacterium smegmatis (Ms) msmeg5257 is a hemolysin III family protein that is homologous to Mycobacterium tuberculosis (Mtb) Rv1085c, but it has an unclear function in growth. To address this issue, we utilized the CRISPR/Cas9 gene editor to construct Δmsmeg5257 strains and combined RNA transcription and LC-MS/MS protein profiling to determine the functional role of msmeg5257 in Ms growth. The correlative analysis showed that the deletion of msmeg5257 inhibits ABC transporters in the cytomembrane and inhibits the biosynthesis of amino acids in the cell wall. Corresponding to these results, we confirmed that MSMEG5257 localizes in the cytomembrane via subcellular fractionation and also plays a role in facilitating the transport of iron ions in environments with low iron levels. Our data provide insights that msmeg5257 plays a role in maintaining Ms metabolic homeostasis, and the deletion of msmeg5257 significantly impacts the growth rate of Ms. Furthermore, msmeg5257, a promising drug target, offers a direction for the development of novel therapeutic strategies against mycobacterial diseases.

3.
Infect Drug Resist ; 17: 417-425, 2024.
Article in English | MEDLINE | ID: mdl-38318210

ABSTRACT

Background: Tuberculosis (TB) remains a severe public health problem globally, and it is essential to comprehend the transmission pattern to control tuberculosis. Herein, we evaluated the drug-resistant characteristics, recent transmission, and associated risk factors of TB in Golmud, Qinghai, China. Methods: In this study, we performed a population-based study of patients diagnosed with TB in Golmud from 2013 to 2018. Drug-susceptibility testing and whole-genome sequencing were performed on 133 Mycobacterium tuberculosis strains. The genomic clustering rate was calculated to evaluate the level of recent transmission. Risk factors were identified by logistic regression analysis. Results: Our results showed that 46.97% (62/132) of strains were phylogenetically clustered and formed into 23 transmission clusters, suggesting a high recent transmission of TB in the area. 12.78% (17/133) strains were multidrug-resistant/rifampicin tuberculosis (MDR/RR-TB), with a high drug-resistant burden. Based on drug resistance gene analysis, we found 23 strains belonging to genotype MDR/RR-TB, where some strains may have borderline mutations. Among these strains, 65.2% (15/23) were found within putative transmission clusters. Additionally, risk factor analysis showed that recent transmission of TB happened more in patients with Tibetan nationality or older age. Conclusion: Overall our study indicates that the recent transmissions of MTB strains, especially genotypic MDR/RR strains, drive the tuberculosis epidemic in Golmud, which could contribute to developing effective TB prevention and control strategies.

4.
Eur J Clin Microbiol Infect Dis ; 43(1): 105-114, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37980301

ABSTRACT

PURPOSE: We aimed at evaluating the diagnostic efficacy of a nucleotide matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) assay to detect drug resistance of Mycobacterium tuberculosis. METHODS: Overall, 263 M. tuberculosis clinical isolates were selected to evaluate the performance of nucleic MALDI-TOF-MS for rifampin (RIF), isoniazid (INH), ethambutol (EMB), moxifloxacin (MXF), streptomycin (SM), and pyrazinamide (PZA) resistance detection. The results for RIF, INH, EMB, and MXF were compared with phenotypic microbroth dilution drug susceptibility testing (DST) and whole-genome sequencing (WGS), and the results for SM and PZA were compared with those obtained by WGS. RESULTS: Using DST as the gold standard, the sensitivity, specificity, and kappa values of the MALDI-TOF-MS assay for the detection of resistance were 98.2%, 98.7%, and 0.97 for RIF; 92.8%, 99%, and 0.90 for INH; 82.4%, 98.0%, and 0.82 for EMB; and 92.6%, 99.5%, and 0.94 for MXF, respectively. Compared with WGS as the reference standard, the sensitivity, specificity, and kappa values of the MALDI-TOF-MS assay for the detection of resistance were 97.4%, 100.0%, and 0.98 for RIF; 98.7%, 92.9%, and 0.92 for INH; 96.3%, 100.0%, and 0.98 for EMB; 98.1%, 100.0%, and 0.99 for MXF; 98.0%, 100.0%, and 0.98 for SM; and 50.0%, 100.0%, and 0.65 for PZA. CONCLUSION: The nucleotide MALDI-TOF-MS assay yielded highly consistent results compared to DST and WGS, suggesting that it is a promising tool for the rapid detection of sensitivity to RIF, INH, EMB, and MXF.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Humans , Antitubercular Agents/pharmacology , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Microbial Sensitivity Tests , Streptomycin , Ethambutol , Isoniazid , Rifampin , Tuberculosis, Multidrug-Resistant/diagnosis , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Multidrug-Resistant/microbiology
5.
BMC Infect Dis ; 23(1): 869, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38082230

ABSTRACT

BACKGROUND: Screening for Tuberculosis (TB) is a critical tactic for minimizing the prevalence of illness within schools. Tuberculosis Preventive Therapy (TPT), in turn, effectively staves off the development of TB from latent tuberculosis infection (LTBI). Unfortunately, there is limited research on LTBI and TPT among students. This study aimed to assess LTBI among freshmen in Changping District and advocate for the implementation of TPT. METHODS: The prospective study collected data from 12 educational institutions within the Changping District of Beijing. The Kolmogorov - Smirnov test and other statistical methods were used for statistical analysis, [Formula: see text] was obtained using the formula [Formula: see text] nΣA2/nRnC-1, df = (C-1) (R-1). We analyzed potential factors impacting the LTBI rate, and scrutinized the possible causes behind the low application of TPT and its efficacy for LTBI treatment, China. RESULTS: Among 19,872 freshmen included in this study, 18 active TB cases (91 per 10,0000) and 2236 LTBI cases (11.6% of 19,223) were identified, respectively. Furthermore, of those with LTBI, 1045 (5.4% of 19,223) showed a strong positive for purified protein derivative (PPD), but only 312 opted for TB preventive treatment. There appeared to be no significant difference in the prevalence of LTBI and TPT rate between male and female students. Concurrently, 11 (71 per 100,000) and 7 (158 per 100,000) cases of active tuberculosis were identified in 6 universities and 6 higher vocational colleges, respectively. Interestingly, almost all freshmen who underwent TPT came from universities, suggesting a statistically significant disparity in TPT rate (χ2 = 139.829, P < 0.001) between these two types of educational institutions. Meanwhile, as for the age-wise distribution of latent infection among 17-20 years old freshmen, the LTBI rate exhibited 10.5%, 11.6%, 12.1% and 13.5%, respectively. Correlation between LTBI rate, the strong positive rate was statistically significant among different ages (χ2 = 34.559, P < 0.001). Over a follow-up period of 2 years, three students were diagnosed with active tuberculosis, one of which was resistant to rifampicin. All three students manifested a strong positive for PPD and declined preventive treatment during TB screening. CONCLUSIONS: The data indicates a high rate of LTBI amongst students in areas with a heavy TB burden, potentially leading to cross-regional TB transmission due to the migration of students. Education level might contribute to the limited uptake of TPT. Therefore, improving the implementation of TB preventive treatments is crucial in controlling and preventing TB across schools.


Subject(s)
Latent Tuberculosis , Tuberculosis , Humans , Male , Female , Adolescent , Young Adult , Adult , Beijing/epidemiology , Prospective Studies , Tuberculin , Tuberculosis/diagnosis , Tuberculosis/epidemiology , Tuberculosis/prevention & control , Latent Tuberculosis/diagnosis , Latent Tuberculosis/epidemiology , Latent Tuberculosis/prevention & control , China/epidemiology
6.
Microbiol Spectr ; 11(6): e0184223, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-37947405

ABSTRACT

IMPORTANCE: To date, rapid diagnostic methods based on the MPT64 antigen assay are increasingly utilized to differentiate between non-tuberculous mycobacteria and TB disease in clinical settings. Furthermore, numerous novel techniques based on the MPT64 release assay are continuously being developed and applied for the identification of both pulmonary and extrapulmonary TB. However, the diagnostic accuracy of the MPT64 antigen assay is influenced by the presence of 63 bp deletion variants within the mpt64 gene. To our knowledge, this is the first report on the association between the 63 bp deletion variant in mpt64 and Mycobacterium tuberculosis L4.2.2 globally, which highlights the need for the cautious utilization of MPT64-based testing in regions where L4.2.2 isolates are prevalent, such as China and Vietnam, and MPT64 negative results should be confirmed with another assay. In addition, further studies on vaccine development and immunology based on MPT64 should consider these isolates with 63 bp deletion variant.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Humans , Tuberculosis/diagnosis , Tuberculosis/microbiology , Antigens, Bacterial/genetics , Sensitivity and Specificity , China
7.
Microbiol Spectr ; : e0132423, 2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37732780

ABSTRACT

Multidrug-resistant tuberculosis (MDR-TB) has a severe impact on public health. To investigate the drug-resistant profile, compensatory mutations and genetic variations among MDR-TB isolates, a total of 546 MDR-TB isolates from China underwent drug-susceptibility testing and whole genome sequencing for further analysis. The results showed that our isolates have a high rate of fluoroquinolone resistance (45.60%, 249/546) and a low proportion of conferring resistance to bedaquiline, clofazimine, linezolid, and delamanid. The majority of MDR-TB isolates (77.66%, 424/546) belong to Lineage 2.2.1, followed by Lineage 4.5 (6.41%, 35/546), and the Lineage 2 isolates have a strong association with pre-XDR/XDR-TB (P < 0.05) in our study. Epidemic success analysis using time-scaled haplotypic density (THD) showed that clustered isolates outperformed non-clustered isolates. Compensatory mutations happened in rpoA, rpoC, and non-RRDR of rpoB genes, which were found more frequently in clusters and were associated with the increase of THD index, suggesting that increased bacterial fitness was associated with MDR-TB transmission. In addition, the variants in resistance associated genes in MDR isolates are mainly focused on single nucleotide polymorphism mutations, and only a few genes have indel variants, such as katG, ethA. We also found some genes underwent indel variation correlated with the lineage and sub-lineage of isolates, suggesting the selective evolution of different lineage isolates. Thus, this analysis of the characterization and genetic diversity of MDR isolates would be helpful in developing effective strategies for treatment regimens and tailoring public interventions. IMPORTANCE Multidrug-resistant tuberculosis (MDR-TB) is a serious obstacle to tuberculosis prevention and control in China. This study provides insight into the drug-resistant characteristics of MDR combined with phenotypic drug-susceptibility testing and whole genome sequencing. The compensatory mutations and epidemic success analysis were analyzed by time-scaled haplotypic density (THD) method, suggesting clustered isolates and compensatory mutations are associated with MDR-TB transmission. In addition, the insertion and deletion variants happened in some genes, which are associated with the lineage and sub-lineage of isolates, such as the mpt64 gene. This study offered a valuable reference and increased understanding of MDR-TB in China, which could be crucial for achieving the objective of precision medicine in the prevention and treatment of MDR-TB.

8.
Small ; 19(45): e2303277, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37434035

ABSTRACT

Sliding mode triboelectric nanogenerator (S-TENG) is effective for low-frequency mechanical energy harvesting owing to their more efficient mechanical energy extraction capability and easy packaging. Ternary electrification layered (TEL) architecture is proven useful for improving the output performance of S-TENG. However, the bottleneck of electric output is the air breakdown on the interface of tribo-layers, which seriously restricts its further improvement. Herein, a strategy is adopted by designing a shielding layer to prevent air breakdown on the central surface of tribo-layers. And the negative effects of air breakdown on the edge of sliding layer are averted by increasing the shrouded area of tribo-layers on slider. Output charge of this shielding-layer and shrouded-tribo-area optimized ternary electrification layered triboelectric nanogenerator (SS-TEL-TENG) achieves 3.59-fold enhancement of traditional S-TENG and 1.76-fold enhancement of TEL-TENG. Furthermore, even at a very low speed of 30 rpm, output charge, current, and average power of the rotation-type SS-TEL-TENG reach 4.15 µC, 74.9 µA, and 25.4 mW (2.05 W m-2 Hz-1 ), respectively. With such high-power output, 4248 LEDs can be lighted brightly by SS-TEL-TENG directly. The high-performance SS-TEL-TENG demonstrated in this work will have great applications for powering ubiquitous sensor network in the Internet of Things (IoT).

9.
Adv Mater ; 35(40): e2302954, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37354126

ABSTRACT

Improving the output energy and durability of triboelectric nanogenerators (TENGs) remains a considerable challenge for their practical applications. Owing to the interface effect of triboelectrification and electrostatic induction, thinner films with higher dielectric constants yield a higher output; however, they are not durable for practical applications. Herein, the dielectric surface effect is changed into a volume effect by adopting a millimeter-thick dielectric film with an inner porous network structure so that charges can hop in the surface state of the network. Charge migration inside the dielectric film is the key factor affecting the output of the triboelectric nanogenerator (TENG) with a thick film, based on which each working stage follows the energy-maximization principle in the voltage-charge plot. The maximum peak and average power densities of the TENG with polyurethane foam film in 1 mm thickness reach 40.9 and 20.7 W m-2  Hz-1 , respectively, under environmental conditions, and the output charge density is 5.14 times that of TENGs with a poly(tetrafluoroethylene) film of the same thickness. Superdurability is achieved in the rotary-mode TENG after 200 000 operation cycles. This study identifies the physical mechanism of the thick dielectric film used in TENGs and provides a new approach to promote the output and durability of TENGs.

10.
Front Microbiol ; 14: 1115295, 2023.
Article in English | MEDLINE | ID: mdl-36876077

ABSTRACT

Background: Tuberculosis may reoccur due to reinfection or relapse after initially successful treatment. Distinguishing the cause of TB recurrence is crucial to guide TB control and treatment. This study aimed to investigate the source of TB recurrence and risk factors related to relapse in Hunan province, a high TB burden region in southern China. Methods: A population-based retrospective study was conducted on all culture-positive TB cases in Hunan province, China from 2013 to 2020. Phenotypic drug susceptibility testing and whole-genome sequencing were used to detect drug resistance and distinguish between relapse and reinfection. Pearson chi-square test and Fisher exact test were applied to compare differences in categorical variables between relapse and reinfection. The Kaplan-Meier curve was generated in R studio (4.0.4) to describe and compare the time to recurrence between different groups. p < 0.05 was considered statistically significant. Results: Of 36 recurrent events, 27 (75.0%, 27/36) paired isolates were caused by relapse, and reinfection accounted for 25.0% (9/36) of recurrent cases. No significant difference in characteristics was observed between relapse and reinfection (all p > 0.05). In addition, TB relapse occurs earlier in patients of Tu ethnicity compared to patients of Han ethnicity (p < 0.0001), whereas no significant differences in the time interval to relapse were noted in other groups. Moreover, 83.3% (30/36) of TB recurrence occurred within 3 years. Overall, these recurrent TB isolates were predominantly pan-susceptible strains (71.0%, 49/69), followed by DR-TB (17.4%, 12/69) and MDR-TB (11.6%, 8/69), with mutations mainly in codon 450 of the rpoB gene and codon 315 of the katG gene. 11.1% (3/27) of relapse cases had acquired new resistance during treatment, with fluoroquinolone resistance occurring most frequently (7.4%, 2/27), both with mutations in codon 94 of gyrA. Conclusion: Endogenous relapse is the main mechanism leading to TB recurrences in Hunan province. Given that TB recurrences can occur more than 4 years after treatment completion, it is necessary to extend the post-treatment follow-up period to achieve better management of TB patients. Moreover, the relatively high frequency of fluoroquinolone resistance in the second episode of relapse suggests that fluoroquinolones should be used with caution when treating TB cases with relapse, preferably guided by DST results.

12.
Adv Mater ; 35(7): e2209657, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36398558

ABSTRACT

To enhance the durability of triboelectric nanogenerator (TENG), liquid lubrication has been used to reduce mechanical abrasion. However, as the charge transportation behavior in dielectric liquid is not clearly understood, the output energy is still low although some improvements have been reported. Herein, the charge transportation behaviors in dielectric liquid by self-excited liquid suspension triboelectric nanogenerator (LS-TENG) are systematically investigated. The important role of solid-liquid triboelectrification effect, charge-liquid transmission and dissipation effect, and the homogeneous dielectric induction effect in promoting its output performance is found. The LS-TENG with a dual dielectric tribolayer has advantages of slight driving force and long lifetime for harvesting micro energy. The output of LS-TENG remains almost constant for more than 234 k operating cycles. A high charge density of 704 µC m-2 is obtained, 2.7 times as much as that of the current highest record in non-contact TENG. Additionally, the rotary LS-TENG lights up 4200 LEDs and continuously powers a variety of wireless sensors by harvesting wind energy at low wind speed. This work provides an important insight toward the charge transportation mechanism in dielectric liquid, and a prospective strategy for achieving highly robust TENG in micro energy harvesting for practical applications.

13.
Front Public Health ; 10: 989587, 2022.
Article in English | MEDLINE | ID: mdl-36466540

ABSTRACT

Mycobacterium intracellulare is the most common cause of nontuberculous mycobacterial lung disease, with a rapidly growing prevalence worldwide. In this study, we performed comparative genomic analysis and antimicrobial susceptibility characteristics analysis of 117 clinical M. intracellulare strains in China. Phylogenetic analysis showed that clinical M. intracellulare strains had high genetic diversity and were not related to the geographical area. Notably, most strains (76.07%, 89/117) belonged to Mycobacterium paraintracellulare (MP) and Mycobacterium indicus pranii (MIP) in the genome, and we named them MP-MIP strains. These MP-MIP strains may be regarded as a causative agent of chronic lung disease. Furthermore, our data demonstrated that clarithromycin, amikacin, and rifabutin showed strong antimicrobial activity against both M. intracellulare and MP-MIP strains in vitro. Our findings also showed that there was no clear correlation between the rrs, rrl, and DNA gyrase genes (gyrA and gyrB) and the aminoglycosides, macrolides, and moxifloxacin resistance, respectively. In conclusion, this study highlights the high diversity of M. intracellulare in the clinical setting and suggests paying great attention to the lung disease caused by MP-MIP.


Subject(s)
Anti-Infective Agents , Lung Diseases , Humans , Mycobacterium avium Complex/genetics , Phylogeny , Whole Genome Sequencing , China
14.
Article in English | MEDLINE | ID: mdl-36554951

ABSTRACT

Early diagnosis of drug susceptibility for tuberculosis (TB) patients could guide the timely initiation of effective treatment. We evaluated a novel multiplex xMAP TIER (Tuberculosis-Isoniazid-Ethambutol-Rifampicin) assay based on the Luminex xMAP system to detect first-line anti-tuberculous drug resistance. Deoxyribonucleic acid samples from 353 Mycobacterium tuberculosis clinical isolates were amplified by multiplex polymerase chain reaction, followed by hybridization and analysis through the xMAP system. Compared with the broth microdilution method, the sensitivity and specificity of the xMAP TIER assay for detecting resistance was 94.9% (95%CI, 90.0-99.8%) and 98.9% (95%CI, 97.7-100.0%) for rifampicin; 89.1% (95%CI, 83.9-94.3%) and 100.0% (95%CI, 100.0-100.0%) for isoniazid; 82.1% (95% CI, 68.0-96.3%) and 99.7% (95% CI, 99.0-100.0%) for ethambutol. With DNA sequencing as the reference standard, the sensitivity and specificity of xMAP TIER for detecting resistance were 95.0% (95% CI, 90.2-99.8%) and 99.6% (95% CI, 98.9-100.0%) for rifampicin; 96.9% (95% CI, 93.8-99.9%) and 100.0% (95% CI, 100.0-100.0%) for isoniazid; 86.1% (95% CI, 74.8-97.4%) and 100.0% (95% CI, 100.0-100.0%) for ethambutol. The results achieved showed that the xMAP TIER assay had good performance for detecting first-line anti-tuberculosis drug resistance, and it has the potential to diagnose drug-resistant tuberculosis more accurately due to the addition of more optimal design primers and probes on open architecture xMAP system.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Humans , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Isoniazid/pharmacology , Isoniazid/therapeutic use , Ethambutol/pharmacology , Rifampin/pharmacology , Rifampin/therapeutic use , Microspheres , Microbial Sensitivity Tests , Mycobacterium tuberculosis/genetics , Tuberculosis/drug therapy
15.
Small ; 18(50): e2205704, 2022 12.
Article in English | MEDLINE | ID: mdl-36319475

ABSTRACT

Triboelectric nanogenerators (TENGs) and dielectric elastomer generators (DEGs) are potentially promising energy conversion technologies, but they still have limitations due to their own intrinsic characteristics, including the low energy output of TENGs caused by the air breakdown effect, and external polarization voltage requirement for DEGs, which severely limit their practical applications. Herein, coupling TENG with DEG is proposed to build a mutual beneficial self-excitation hybrid generator (named TDHG) for harvesting distributed and low-quality mechanical energy (high entropy energy). Experimental results demonstrate that the output charges of this TDHG are enhanced by fivefold of that of the conventional charge-excitation TENG, and continuous operation of DEG is also realized by simple mechanical triggering. More importantly, owing to the high peak power contributed by TENG and the long output pulse duration guaranteed by DEG, the TDHG realizes a much higher energy conversion efficiency of 32% in comparison to either the TENG (3.6%) or DEG (13.2%). This work proposes a new design concept for hybridized energy harvester toward highly efficient mechanical energy harvesting.


Subject(s)
Entropy , Heart Rate , Hybrid Cells , Physical Phenomena
16.
Microbiol Spectr ; 10(5): e0240521, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36214695

ABSTRACT

Multidrug-resistant or rifampicin-resistant tuberculosis (MDR/RR-TB) is a global barrier for the Stop TB plan. To identify risk factors for treatment outcome and cluster transmission of MDR/RR-TB, whole-genome sequencing (WGS) data of isolates from patients of the Chongqing Tuberculosis Control Institute were used for phylogenetic classifications, resistance predictions, and cluster analysis. A total of 223 MDR/RR-TB cases were recorded between 1 January 2018 and 31 December 2020. Elderly patients and those with lung cavitation are at increased risk of death due to MDR/RR-TB. A total of 187 MDR/RR strains were obtained from WGS data; 152 were classified as lineage 2 strains. Eighty (42.8%) strains differing by a distance of 12 or fewer single nucleotide polymorphisms were classified as 20 genomic clusters, indicating recent transmission. Patients infected with lineage 2 strains or those with occupations listed as "other" are significantly associated with a transmission cluster of MDR/RR-TB. Analysis of resistant mutations against first-line tuberculosis drugs found that 76 (95.0%) of all 80 strains had the same mutations within each cluster. A total of 55.0% (44 of 80) of the MDR/RR-TB strains accumulated additional drug resistance mutations along the transmission chain, especially against fluoroquinolones (63.6% [28 of 44]). Recent transmission of MDR/RR strains is driving the MDR/RR-TB epidemics, leading to the accumulation of more serious resistance along the transmission chains. IMPORTANCE The drug resistance molecular characteristics of MDR/RR-TB were elucidated by genome-wide analysis, and risk factors for death by MDR/RR-TB were identified in combination with patient information. Cluster characteristics of MDR/RR-TB in the region were analyzed by genome-wide analysis, and risk factors for cluster transmission (recent transmission) were analyzed. These analyses provide reference for the prevention and treatment of MDR/RR-TB in Chongqing.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Humans , Aged , Rifampin/pharmacology , Rifampin/therapeutic use , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Phylogeny , Drug Resistance, Multiple, Bacterial/genetics , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Multidrug-Resistant/epidemiology , Tuberculosis, Multidrug-Resistant/microbiology , Genotype , Mutation , Fluoroquinolones , Microbial Sensitivity Tests
17.
Research (Wash D C) ; 2022: 9812865, 2022.
Article in English | MEDLINE | ID: mdl-35909938

ABSTRACT

Triboelectric nanogenerator (TENG) is a promising strategy for harvesting low frequency mechanical energy. However, the bottlenecks of limited electric output by air/dielectric breakdown and poor durability by material abrasion seriously restrict its further improvement. Herein, we propose a liquid lubrication promoted sliding mode TENG to address both issues. Liquid lubrication greatly reduces interface material abrasion, and its high breakdown strength and charge transmission effect further enhance device charge density. Besides, the potential decentralization design by the voltage balance bar effectively suppresses the dielectric breakdown. In this way, the average power density up to 87.26 W·m-2·Hz-1, energy conversion efficiency of 48%, and retention output of 90% after 500,000 operation cycles are achieved, which is the highest average power density and durability currently. Finally, a cell phone is charged to turn on by a palm-sized TENG device at 2 Hz within 25 s. This work has a significance for the commercialization of TENG-based self-powered systems.

18.
Nanomicro Lett ; 14(1): 155, 2022 Aug 02.
Article in English | MEDLINE | ID: mdl-35916998

ABSTRACT

Triboelectric nanogenerator (TENG) is regarded as an effective strategy to convert environment mechanical energy into electricity to meet the distributed energy demand of large number of sensors in the Internet of Things (IoTs). Although TENG based on the coupling of triboelectrification and air-breakdown achieves a large direct current (DC) output, material abrasion is a bottleneck for its applications. Here, inspired by primary cell and its DC signal output characteristics, we propose a novel primary cell structure TENG (PC-TENG) based on contact electrification and electrostatic induction, which has multiple working modes, including contact separation mode, freestanding mode and rotation mode. The PC-TENG produces DC output and operates at low surface contact force. It has an ideal effective charge density (1.02 mC m-2). Meanwhile, the PC-TENG shows a superior durability with 99% initial output after 100,000 operating cycles. Due to its excellent output performance and durability, a variety of commercial electronic devices are powered by PC-TENG via harvesting wind energy. This work offers a facile and ideal scheme for enhancing the electrical output performance of DC-TENG at low surface contact force and shows a great potential for the energy harvesting applications in IoTs.

19.
J Glob Antimicrob Resist ; 31: 90-97, 2022 12.
Article in English | MEDLINE | ID: mdl-35660663

ABSTRACT

OBJECTIVES: The Mycobacterium avium complex (MAC), comprising a series of subspecies, has a worldwide distribution, with differences in drug susceptibility among subspecies. This study aimed to assess the composition of MAC and susceptibility differences among subspecies in mainland China. METHODS: A total of 287 MAC clinical strains were included in the study. Multitarget sequences were applied to accurately identify subspecies, and a microdilution method was used to evaluate minimum inhibitory concentrations (MICs) among subspecies using Sensititre SLOMYCO plates. RESULTS: Mycobacterium intracellular (N = 169), Mycobacterium avium (N = 52), Mycobacterium chimaera (N = 22), Mycobacterium marseillense (N = 25), Mycobacterium colombiense (N = 14), Mycobacterium yongonense (N = 4), Mycobacterium vulneris (N = 3) and Mycobacterium timonense (N = 2) were isolated from MAC. Clarithromycin, amikacin and rifabutin showed lower MIC50 and MIC90 values than other drugs, and the resistance rates of clarithromycin, amikacin, linezolid and moxifloxacin were 6.3%, 10.5%, 51.9% and 46.3%, respectively. The resistance rates of clarithromycin and moxifloxacin in the initial treatment group were significantly lower than those in the retreatment group (4.09% vs. 12.94%; 30.41% vs. 75.29%; P < 0.05). Drug susceptibility differences were observed in clarithromycin and moxifloxacin among the five major subspecies (P < 0.05); however, those statistically significant differences disappeared when MACs were divided into two groups according to previous anti-tuberculosis (anti-TB) treatment history. CONCLUSION: This study revealed that MAC, primarily comprising M. intracellulare, was susceptible to clarithromycin, amikacin and rifabutin. Drug susceptibility among subspecies did not exhibit intrinsic differences in our study. Previous anti-TB treatment patients are more resistant to drugs; thus, attention should be given to those patients in the clinic.


Subject(s)
Mycobacterium avium-intracellulare Infection , Mycobacterium tuberculosis , Humans , Mycobacterium avium Complex , Microbial Sensitivity Tests , Clarithromycin/pharmacology , Amikacin/pharmacology , Moxifloxacin/pharmacology , Mycobacterium avium-intracellulare Infection/microbiology , Drug Resistance, Bacterial , Rifabutin
20.
Infect Drug Resist ; 15: 1345-1352, 2022.
Article in English | MEDLINE | ID: mdl-35378895

ABSTRACT

Objective: To compare the ability of detection of borderline rifampicin resistance in Mycobacterium tuberculosis between molecular assay and phenotypic drug susceptibility tests. Methods: Fifty-seven isolates with His445Leu, Asp435Tyr, Leu452Pro, Leu430Pro, His445Asn, Ile491Phe, and His445Ser mutations in rpoB gene identified by whole-genome sequencing conferring borderline rifampicin resistance were included. Molecular-based Xpert MTB/RIF, phenotypic Löwenstein-Jensen (L-J) medium-based drug susceptibility test (DST) with a critical concentration of 40.0µg/mL and minimal inhibitory concentration (MIC) assay were performed to detect borderline rifampicin resistance. Results: When using Xpert MTB/RIF, 48/57 (84.2%) isolates exhibited resistance to rifampicin. 25/57 (43.9%) and 33/57 (57.9%) isolates showed rifampicin resistance by L-J medium-based DST with 4 and 6 weeks of incubation, respectively. 30/57 (52.6%) and 40/57 (70.2%) strains were resistant to rifampicin by MIC method at cutoff values of 1.0 and 0.5µg/mL, respectively. The detection rate of rifampicin resistance of Xpert MTB/RIF was significantly higher than that of phenotypic methods (p < 0.001). Of the 57 isolates with borderline rpoB mutations, 5 (8.8%) had MICs of 0.25 or 0.12µg/mL, 22 (38.6%) had MICs of 0.5µg/mL or 1.0µg/mL, and 30 (52.6%) other isolates showed MICs ≥2.0µg/mL. Conclusion: Molecular-based Xpert MTB/RIF showed superior ability to detect borderline rifampicin resistance over phenotypic DST methods. Extending the incubation time of L-J DST or lowering the cutoff value of the MIC method can improve borderline rifampicin resistance detection.

SELECTION OF CITATIONS
SEARCH DETAIL
...