Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 113(9): 096401, 2014 Aug 29.
Article in English | MEDLINE | ID: mdl-25215996

ABSTRACT

The characteristics of topological insulators are manifested in both their surface and bulk properties, but the latter remain to be explored. Here we report bulk signatures of pressure-induced band inversion and topological phase transitions in Pb(1-x)Sn(x)Se (x=0.00, 0.15, and 0.23). The results of infrared measurements as a function of pressure indicate the closing and the reopening of the band gap as well as a maximum in the free carrier spectral weight. The enhanced density of states near the band gap in the topological phase gives rise to a steep interband absorption edge. The change of density of states also yields a maximum in the pressure dependence of the Fermi level. Thus, our conclusive results provide a consistent picture of pressure-induced topological phase transitions and highlight the bulk origin of the novel properties in topological insulators.

2.
Phys Rev E Stat Nonlin Soft Matter Phys ; 79(5 Pt 2): 056610, 2009 May.
Article in English | MEDLINE | ID: mdl-19518585

ABSTRACT

We investigate Painlevé integrability of a generalized nonautonomous one-dimensional nonlinear Schrödinger (NLS) equation with time- and space-dependent dispersion, nonlinearity, and external potentials. Through the Painlevé analysis some explicit requirements on the dispersion, nonlinearity, dissipation/gain, and the external potential as well as the constraint conditions are identified. It provides an explicit way to engineer integrable nonautonomous NLS equations at least in the sense of Painlevé integrability. Furthermore analytical solutions of this class of integrable nonautonomous NLS equations can be obtained explicitly from the solutions of the standard NLS equation by a general transformation. The result provides a significant way to control coherently the soliton dynamics in the corresponding nonlinear systems, as that in Bose-Einstein condensate experiments. We analyze explicitly the soliton dynamics under the nonlinearity management and the external potentials and discuss its application in the matter-wave dynamics. Some comparisons with the previous works have also been discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...