Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Nat Metab ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773347

ABSTRACT

Lipid droplet tethering with mitochondria for fatty acid oxidation is critical for tumor cells to counteract energy stress. However, the underlying mechanism remains unclear. Here, we demonstrate that glucose deprivation induces phosphorylation of the glycolytic enzyme phosphofructokinase, liver type (PFKL), reducing its activity and favoring its interaction with perilipin 2 (PLIN2). On lipid droplets, PFKL acts as a protein kinase and phosphorylates PLIN2 to promote the binding of PLIN2 to carnitine palmitoyltransferase 1A (CPT1A). This results in the tethering of lipid droplets and mitochondria and the recruitment of adipose triglyceride lipase to the lipid droplet-mitochondria tethering regions to engage lipid mobilization. Interfering with this cascade inhibits tumor cell proliferation, promotes apoptosis and blunts liver tumor growth in male mice. These results reveal that energy stress confers a moonlight function to PFKL as a protein kinase to tether lipid droplets with mitochondria and highlight the crucial role of PFKL in the integrated regulation of glycolysis, lipid metabolism and mitochondrial oxidation.

3.
Nat Chem Biol ; 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38538923

ABSTRACT

Telomere dysfunction is intricately linked to the aging process and stands out as a prominent cancer hallmark. Here we demonstrate that telomerase activity is differentially regulated in cancer and normal cells depending on the expression status of fructose-1,6-bisphosphatase 1 (FBP1). In FBP1-expressing cells, FBP1 directly interacts with and dephosphorylates telomerase reverse transcriptase (TERT) at Ser227. Dephosphorylated TERT fails to translocate into the nucleus, leading to the inhibition of telomerase activity, reduction in telomere lengths, enhanced senescence and suppressed tumor cell proliferation and growth in mice. Lipid nanoparticle-mediated delivery of FBP1 mRNA inhibits liver tumor growth. Additionally, FBP1 expression levels inversely correlate with TERT pSer227 levels in renal and hepatocellular carcinoma specimens and with poor prognosis of the patients. These findings demonstrate that FBP1 governs cell immortality through its protein phosphatase activity and uncover a unique telomerase regulation in tumor cells attributed to the downregulation or deficiency of FBP1 expression.

4.
Hepatology ; 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38051951

ABSTRACT

BACKGROUND AND AIMS: Cross talk between tumor cells and immune cells enables tumor cells to escape immune surveillance and dictate responses to immunotherapy. Previous studies have identified that downregulation of the glycolytic enzyme fructose-1,6-bisphosphate aldolase B (ALDOB) in tumor cells orchestrated metabolic programming to favor HCC. However, it remains elusive whether and how ALDOB expression in tumor cells affects the tumor microenvironment in HCC. APPROACH AND RESULTS: We found that ALDOB downregulation was negatively correlated with CD8 + T cell infiltration in human HCC tumor tissues but in a state of exhaustion. Similar observations were made in mice with liver-specific ALDOB knockout or in subcutaneous tumor models with ALDOB knockdown. Moreover, ALDOB deficiency in tumor cells upregulates TGF-ß expression, thereby increasing the number of Treg cells and impairing the activity of CD8 + T cells. Consistently, a combination of low ALDOB and high TGF-ß expression exhibited the worst overall survival for patients with HCC. More importantly, the simultaneous blocking of TGF-ß and programmed cell death (PD) 1 with antibodies additively inhibited tumorigenesis induced by ALDOB deficiency in mice. Further mechanistic experiments demonstrated that ALDOB enters the nucleus and interacts with lysine acetyltransferase 2A, leading to inhibition of H3K9 acetylation and thereby suppressing TGFB1 transcription. Consistently, inhibition of lysine acetyltransferase 2A activity by small molecule inhibitors suppressed TGF-ß and HCC. CONCLUSIONS: Our study has revealed a novel mechanism by which a metabolic enzyme in tumor cells epigenetically modulates TGF-ß signaling, thereby enabling cancer cells to evade immune surveillance and affect their response to immunotherapy.

5.
Cell Metab ; 34(9): 1312-1324.e6, 2022 09 06.
Article in English | MEDLINE | ID: mdl-36007522

ABSTRACT

High expression of PD-L1 in tumor cells contributes to tumor immune evasion. However, whether PD-L1 expression in tumor cells is regulated by the availability of nutrients is unknown. Here, we show that in human glioblastoma cells, high glucose promotes hexokinase (HK) 2 dissociation from mitochondria and its subsequent binding and phosphorylation of IκBα at T291. This leads to increased interaction between IκBα and µ-calpain protease and subsequent µ-calpain-mediated IκBα degradation and NF-κB activation-dependent transcriptional upregulation of PD-L1 expression. Expression of IκBα T291A in glioblastoma cells blocked high glucose-induced PD-L1 expression and promoted CD8+ T cell activation and infiltration into the tumor tissue, reducing brain tumor growth. Combined treatment with an HK inhibitor and an anti-PD-1 antibody eliminates tumor immune evasion and remarkably enhances the anti-tumor effect of immune checkpoint blockade. These findings elucidate a novel mechanism underlying the upregulation of PD-L1 expression mediated by aerobic glycolysis and underscore the roles of HK2 as a glucose sensor and a protein kinase in regulation of tumor immune evasion.


Subject(s)
B7-H1 Antigen , Glioblastoma , Cell Line, Tumor , Glucose , Glycolysis , Humans , NF-KappaB Inhibitor alpha/metabolism , Phosphorylation , Tumor Escape
6.
Hepatology ; 74(6): 3037-3055, 2021 12.
Article in English | MEDLINE | ID: mdl-34292642

ABSTRACT

BACKGROUND AND AIMS: Insulin receptor (IR) transduces cell surface signal through phosphoinositide 3-kinase (PI3K)-AKT pathways or translocates to the nucleus and binds to the promoters to regulate genes associated with insulin actions, including de novo lipogenesis (DNL). Chronic activation of IR signaling drives malignant transformation, but the underlying mechanisms remain poorly defined. Down-regulation of fructose-1,6-bisphosphate aldolase (ALDO) B in hepatocellular carcinoma (HCC) is correlated with poor prognosis. We aim to study whether and how ALDOB is involved in IR signaling in HCC. APPROACH AND RESULTS: Global or liver-specific ALDOB knockout (L-ALDOB-/- ) mice were used in N-diethylnitrosamine (DEN)-induced HCC models, whereas restoration of ALDOB expression was achieved in L-ALDOB-/- mice by adeno-associated virus (AAV). 13 C6 -glucose was employed in metabolic flux analysis to track the de novo fatty acid synthesis from glucose, and nontargeted lipidomics and targeted fatty acid analysis using mass spectrometry were performed. We found that ALDOB physically interacts with IR and attenuates IR signaling through down-regulating PI3K-AKT pathways and suppressing IR nuclear translocation. ALDOB depletion or disruption of IR/ALDOB interaction in ALDOB mutants promotes DNL and tumorigenesis, which is significantly attenuated with ALDOB restoration in L-ALDOB-/- mice. Notably, attenuated IR/ALDOB interaction in ALDOB-R46A mutant exhibits more significant tumorigenesis than releasing ALDOB/AKT interaction in ALDOB-R43A, whereas knockdown IR sufficiently diminishes tumor-promoting effects in both mutants. Furthermore, inhibiting phosphorylated AKT or fatty acid synthase significantly attenuates HCC in L-ALDOB-/- mice. Consistently, ALDOB down-regulation is correlated with up-regulation of IR signaling and DNL in human HCC tumor tissues. CONCLUSIONS: Our study reports a mechanism by which loss of ALDOB activates IR signaling primarily through releasing IR/ALDOB interaction to promote DNL and HCC, highlighting a potential therapeutic strategy in HCC.


Subject(s)
Carcinogenesis/genetics , Fructose-Bisphosphate Aldolase/metabolism , Lipogenesis/genetics , Liver Neoplasms, Experimental/genetics , Receptor, Insulin/metabolism , Animals , Carcinogenesis/chemically induced , Carcinogenesis/pathology , Cell Line, Tumor , Diethylnitrosamine/administration & dosage , Down-Regulation , Fatty Acids/biosynthesis , Fructose-Bisphosphate Aldolase/genetics , Gene Expression Regulation, Neoplastic , Lipidomics , Liver/metabolism , Liver/pathology , Liver Neoplasms, Experimental/chemically induced , Liver Neoplasms, Experimental/metabolism , Liver Neoplasms, Experimental/pathology , Male , Mice, Knockout , Phosphorylation
7.
Mol Oncol ; 15(2): 710-724, 2021 02.
Article in English | MEDLINE | ID: mdl-33155364

ABSTRACT

Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide. Here, we identified that increased miR-23a expression in HCC tissues was associated with worse survival. More importantly, we found that STAT5A was a target of miR-23a, whose levels significantly decreased in tumor tissues. Stable expression of STAT5A in Huh7 cells suppressed glucose metabolism and tumor growth. Finally, this study showed that increased miR-23a negatively regulated STAT5A, which further activated AKT signaling to enable rapid metabolism for accelerated tumor growth in HCC. Taken together, our results demonstrated that the miR-23a-STAT5A-AKT signaling pathway is critical to alter glucose metabolism in HCC and may offer new opportunities for effective therapy.


Subject(s)
Carcinoma, Hepatocellular/metabolism , Glucose/metabolism , Liver Neoplasms/metabolism , MicroRNAs/metabolism , Proto-Oncogene Proteins c-akt/metabolism , RNA, Neoplasm/metabolism , STAT5 Transcription Factor/metabolism , Signal Transduction , Tumor Suppressor Proteins/metabolism , Carcinoma, Hepatocellular/genetics , Cell Line, Tumor , Glucose/genetics , Humans , Liver Neoplasms/genetics , MicroRNAs/genetics , Proto-Oncogene Proteins c-akt/genetics , RNA, Neoplasm/genetics , STAT5 Transcription Factor/genetics , Tumor Suppressor Proteins/genetics
8.
PLoS Biol ; 18(12): e3000803, 2020 12.
Article in English | MEDLINE | ID: mdl-33275593

ABSTRACT

Loss of hepatic fructose-1, 6-bisphosphate aldolase B (Aldob) leads to a paradoxical up-regulation of glucose metabolism to favor hepatocellular carcinogenesis (HCC), but the upstream signaling events remain poorly defined. Akt is highly activated in HCC, and targeting Akt is being explored as a potential therapy for HCC. Herein, we demonstrate that Aldob suppresses Akt activity and tumor growth through a protein complex containing Aldob, Akt, and protein phosphatase 2A (PP2A), leading to inhibition of cell viability, cell cycle progression, glucose uptake, and metabolism. Interestingly, Aldob directly interacts with phosphorylated Akt (p-Akt) and promotes the recruitment of PP2A to dephosphorylate p-Akt, and this scaffolding effect of Aldob is independent of its enzymatic activity. Loss of Aldob or disruption of Aldob/Akt interaction in Aldob R304A mutant restores Akt activity and tumor-promoting effects. Consistently, Aldob and p-Akt expression are inversely correlated in human HCC tissues, and Aldob down-regulation coupled with p-Akt up-regulation predicts a poor prognosis for HCC. We have further discovered that Akt inhibition or a specific small-molecule activator of PP2A (SMAP) efficiently attenuates HCC tumorigenesis in xenograft mouse models. Our work reveals a novel nonenzymatic role of Aldob in negative regulation of Akt activation, suggesting that directly inhibiting Akt activity or through reactivating PP2A may be a potential therapeutic approach for HCC treatment.


Subject(s)
Carcinoma, Hepatocellular/metabolism , Fructose-Bisphosphate Aldolase/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Animals , Apoptosis/drug effects , Carcinoma, Hepatocellular/physiopathology , Cell Line, Tumor , Cell Survival/genetics , China , Fructose-Bisphosphate Aldolase/biosynthesis , Fructose-Bisphosphate Aldolase/genetics , Glucose/metabolism , Humans , Liver Neoplasms/metabolism , Male , Mice , Mice, Nude , Phosphorylation , Protein Phosphatase 2/metabolism , Protein Phosphatase 2/physiology , Xenograft Model Antitumor Assays
9.
Redox Biol ; 37: 101701, 2020 10.
Article in English | MEDLINE | ID: mdl-32863234

ABSTRACT

The well-documented anticarcinogenic properties of natural polyphenolic proanthocyanidins (OPC) have been primarily attributed to their antioxidant and anti-inflammatory potency. Emerging evidence suggests that OPC may target canonical oncogenic pathways, including PI3K/AKT; however, the underlying mechanism and therapeutic potential remain elusive. Here we identify that proanthocyanidin B2 (OPC-B2) directly binds and inhibits AKT activity and downstream signalling, thereby suppressing tumour cell proliferation and metabolism in vitro and in a xenograft and diethyl-nitrosamine (DEN)-induced hepatocellular carcinoma (HCC) mouse models. We further find that OPC-B2 binds to the catalytic and regulatory PH domains to lock the protein in a closed conformation, similar to the well-studied AKT allosteric inhibitor MK-2206. Molecular docking and dynamic simulation suggest that Lys297 and Arg86 are critical sites of OPC-B2 binding; mutation of Lys297 or Arg86 to alanine completely abolishes the antitumor effects of OPC-B2 but not MK-2206. Together, our study reveals that OPC-B2 is a novel allosteric AKT inhibitor with potent anti-tumour efficacy beyond its antioxidant and anti-inflammatory properties.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Proanthocyanidins , Animals , Apoptosis , Carcinogenesis , Carcinoma, Hepatocellular/drug therapy , Cell Line, Tumor , Cell Proliferation , Liver Neoplasms/drug therapy , Mice , Molecular Docking Simulation , Phosphatidylinositol 3-Kinases , Proanthocyanidins/pharmacology , Proto-Oncogene Proteins c-akt
10.
Redox Biol ; 32: 101495, 2020 05.
Article in English | MEDLINE | ID: mdl-32171725

ABSTRACT

Autophagy is an evolutionarily conserved catabolic process that recycles proteins and organelles in a lysosome-dependent manner and is induced as an alternative source of energy and metabolites in response to diverse stresses. Inhibition of autophagy has emerged as an appealing therapeutic strategy in cancer. However, it remains to be explored whether autophagy inhibition is a viable approach for the treatment of hepatocellular carcinoma (HCC). Here, we identify that water-soluble yeast ß-D-glucan (WSG) is a novel autophagy inhibitor and exerts significant antitumour efficacy on the inhibition of HCC cells proliferation and metabolism as well as the tumour growth in vivo. We further reveal that WSG inhibits autophagic degradation by increasing lysosomal pH and inhibiting lysosome cathepsins (cathepsin B and cathepsin D) activities, which results in the accumulation of damaged mitochondria and reactive oxygen species (ROS) production. Furthermore, WSG sensitizes HCC cells to apoptosis via the activation of caspase 8 and the transfer of truncated BID (tBID) into mitochondria under nutrient deprivation condition. Of note, administration of WSG as a single agent achieves a significant antitumour effect in xenograft mouse model and DEN/CCl4 (diethylnitrosamine/carbon tetrachloride)-induced primary HCC model without apparent toxicity. Our studies reveal, for the first time, that WSG is a novel autophagy inhibitor with significant antitumour efficacy as a single agent, which has great potential in clinical application for liver cancer therapy.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Apoptosis , Autophagy , Carcinoma, Hepatocellular/drug therapy , Cell Line, Tumor , Glucans , Liver Neoplasms/drug therapy , Lysosomes , Mice , Reactive Oxygen Species , Saccharomyces cerevisiae
11.
Nat Cancer ; 1(7): 735-747, 2020 07.
Article in English | MEDLINE | ID: mdl-35122041

ABSTRACT

Metabolic reprogramming is a core hallmark of cancer but it remains poorly defined in hepatocellular carcinogenesis (HCC). Here we show that hepatic aldolase B (Aldob) suppresses HCC by directly binding and inhibiting the rate-limiting enzyme in the pentose phosphate pathway, glucose-6-phosphate dehydrogenase (G6PD). A stage-dependent decrease of Aldob and increase of G6PD in human tumors are correlated with poor prognosis for patients with HCC. Global or liver-specific Aldob knockout promotes tumorigenesis in mice through enhancing G6PD activity and pentose phosphate pathway metabolism, whereas pharmacological inhibition or genetic knockdown of G6PD suppresses HCC. Consistently, restoration of Aldob in Aldob knockout mice attenuates tumorigenesis. We further demonstrate that Aldob potentiates p53-mediated inhibition of G6PD in an Aldob-G6PD-p53 complex. This scaffolding effect is independent of Aldob enzymatic activity. Together, our study reveals a new mode of metabolic reprogramming in HCC due to the loss of Aldob, suggesting a potential therapeutic strategy for HCC treatment.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Carcinogenesis/genetics , Carcinoma, Hepatocellular/genetics , Cell Transformation, Neoplastic , Fructose-Bisphosphate Aldolase/genetics , Glucosephosphate Dehydrogenase/genetics , Humans , Liver Neoplasms/genetics , Mice , Pentose Phosphate Pathway/genetics , Tumor Suppressor Protein p53/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...