Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Opt Lett ; 47(17): 4335-4338, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36048647

ABSTRACT

A novel, to the best of our knowledge, performance-enhanced laser heterodyne radiometer has been developed by utilizing a semiconductor optical amplifier to amplify the collected weak solar radiation in an optical fiber. High-spectral-resolution measurements of atmospheric carbon dioxide column absorption are used to validate the technique and performance of the developed instrument. The implementation of optical amplification led to a 9-times improvement in sensitivity according to the Allan variance analysis for noise fluctuations, and resulted in a 7.7-times enhancement in measurement precision for atmospheric carbon dioxide. The promising results showed the great potential of employing this type of compact fiber-optics-based spectral radiometer for applications such as atmospheric greenhouse gas sensing.

2.
Sensors (Basel) ; 21(22)2021 Nov 17.
Article in English | MEDLINE | ID: mdl-34833699

ABSTRACT

We developed a cavity ringdown spectrometer by utilizing a step-scanning and dithering method for matching laser wavelengths to optical resonances of an optical cavity. Our approach is capable of working with two and more lasers for quasi-simultaneous measurements of multiple gas species. The developed system was tested with two lasers operating around 1654 nm and 1658 nm for spectral detections of 12CH4 and its isotope 13CH4 in air, respectively. The ringdown time of the empty cavity was about 340 µs. The achieved high detection sensitivity of a noise-equivalent absorption coefficient was 2.8 × 10-11 cm-1 Hz-1/2 or 1 × 10-11 cm-1 by averaging for 30 s. The uncertainty of the high precision determination of δ13CH4 in air is about 1.3‰. Such a system will be useful for future applications such as environmental monitoring.


Subject(s)
Environmental Monitoring , Lasers , Spectrum Analysis
3.
Sensors (Basel) ; 21(10)2021 May 13.
Article in English | MEDLINE | ID: mdl-34068048

ABSTRACT

We report the development of a laser gas analyzer that measures gas concentrations at a data rate of 100 Hz. This fast data rate helps eddy covariance calculations for gas fluxes in turbulent high wind speed environments. The laser gas analyzer is based on derivative laser absorption spectroscopy and set for measurements of water vapor (H2O, at wavelength ~1392 nm) and carbon dioxide (CO2, at ~2004 nm). This instrument, in combination with an ultrasonic anemometer, has been tested experimentally in both marine and terrestrial environments. First, we compared the accuracy of results between the laser gas analyzer and a high-quality commercial instrument with a max data rate of 20 Hz. We then analyzed and compared the correlation of H2O flux results at data rates of 100 Hz and 20 Hz in both high and low wind speeds to verify the contribution of high frequency components. The measurement results show that the contribution of 100 Hz data rate to flux calculations is about 11% compared to that measured with 20 Hz data rate, in an environment with wind speed of ~10 m/s. Therefore, it shows that the laser gas analyzer with high detection frequency is more suitable for measurements in high wind speed environments.

4.
Opt Express ; 29(2): 2003-2013, 2021 Jan 18.
Article in English | MEDLINE | ID: mdl-33726402

ABSTRACT

We have developed a portable near-infrared laser heterodyne radiometer (LHR) for quasi-simultaneous measurements of atmospheric carbon dioxide (CO2), methane (CH4), water vapor (H2O) and oxygen (O2) column absorption by using three distributed-feedback diode lasers as the local oscillators of the heterodyne detection. The developed system shows good performance in terms of its high spectral resolution of 0.066 cm-1 and a low solar power detection noise which was about 2 times the theoretical quantum limit. Its measurement precision of the column-averaged mole fraction for CO2 and CH4 is within 1.1%, based on the standard deviation from the mean value of the retrieved results for a clean sky. The column abundance information of the O2 is used to correct for the variations and uncertainties of atmosphere pressure, the solar altitude angle, and the prior profiles of pressure and temperature. Comparison measurements of daily column-averaged atmospheric mole fractions of CO2, CH4 and H2O, between our developed LHR and a greenhouse gas observing satellite, show a good agreement, which proves the reliability of our developed system.

5.
Rev Sci Instrum ; 91(8): 083106, 2020 Aug 01.
Article in English | MEDLINE | ID: mdl-32872969

ABSTRACT

This paper reports the development of a compact in situ real-time concentration analysis system for methane dissolved in seawater by using a continuous-wave cavity ringdown spectroscopy (CRDS) technique. The miniaturized design of the system, including optical resonance cavity and control and data acquisition-analysis electronics, has a cylindrical dimension of 550 mm in length and 100 mm in diameter. Ringdown signal generation, data acquisition and storage, current driver, and temperature controller of the diode laser are all integrated in the miniaturized system circuits, with an electrical power consumption of less than 12 W. Fitting algorithms of the ringdown signal and spectral line are implemented in a digital signal processor, which is the main control chip of the system circuit. The detection sensitivity for methane concentration can reach 0.4 ppbv with an approximate averaging time of 240 s (or 4 min). Comparing the system's measurement of ambient air against a high-quality commercial CRDS instrument has demonstrated a good agreement in results. In addition, as a "proof of concept" for measuring dissolved methane, the developed instrument was tested in an actual underwater environment. The results showed the potential of this miniaturized portable instrument for in situ gas sensing applications.

6.
Sensors (Basel) ; 20(7)2020 Mar 30.
Article in English | MEDLINE | ID: mdl-32235470

ABSTRACT

We report here the development of a compact, open-path CO2 and H2O sensor based on the newly introduced scanned-wavelength modulation spectroscopy with the first harmonic phase angle (scanned-WMS-θ1f) method for high-sensitivity, high temporal resolution, ground-based measurements. The considerable advantage of the sensor, compared with existing commercial ones, lies in its fast response of 500 Hz that makes this instrument ideal for resolving details of high-frequency turbulent motion in exceptionally dynamic coastal regions. The good agreement with a commercial nondispersive infrared analyzer supports the utility and accuracy of the sensor. Allan variance analysis shows that the concentration measurement sensitivities can reach 62 ppb CO2 in 0.06 s and 0.89 ppm H2O vapor in 0.26 s averaging time. Autonomous field operation for 15-day continuous measurements of greenhouse gases (CO2/H2O) was performed on a shore-based monitoring tower in Daya Bay, demonstrating the sensor's long-term performance. The capability for high-quality fast turbulent atmospheric gas observations allow the potential for better characterization of oceanographic processes.

7.
Opt Express ; 28(3): 3289-3297, 2020 Feb 03.
Article in English | MEDLINE | ID: mdl-32122001

ABSTRACT

Tunable diode laser absorption spectroscopy has been widely employed for gas sensing, where the gas concentration is often obtained from the absorption signal with a known or a fixed absorption path length. Nevertheless, there are also numerous applications in which the absorption path length is very challenging to retrieve, e.g., open path remote sensing and gas absorption in scattering media. In this work, a new approach, based on the wavelength modulation spectroscopy (WMS), has been developed to measure the gas absorption signal and the corresponding absorption path length simultaneously. The phase angle of the first harmonic signal (1f phase angle) in the WMS technique is utilized for retrieving the absorption path length as well as the gas absorption signal. This approach has been experimentally validated by measuring carbon dioxide (CO2) concentration in open path environment. The CO2 concentration is evaluated by measuring the reflectance signal from a distant object with hundreds of meters away from the system. The measurement accuracy of the absorption path length, evaluated from a 7-day continuous measurement, can reach up to 1%. The promising result has shown a great potential of utilizing the 1f phase angle for gas concentration measurements, e.g., open path remote sensing applications.

8.
Spectrochim Acta A Mol Biomol Spectrosc ; 230: 118071, 2020 Apr 05.
Article in English | MEDLINE | ID: mdl-31958604

ABSTRACT

We have developed a laser heterodyne spectroradiometer in combination with self-calibrated wavelength modulation spectroscopy based on a software-based lock-in amplifier to observe the atmospheric carbon dioxide (CO2) column absorption near wavelength 1.57 µm in solar occultation mode. This combination facilitates miniaturization of laser heterodyne radiometer. Combined with our developed retrieval algorithm, the atmospheric carbon dioxide column concentration is measured to be 413.7 ± 1.9 ppm, in agreement with GOSAT satellite observation results. This system offers high spectral signal-to-noise ratio of ~333 for the zeroth harmonic (0f) normalized second harmonic (R2f) signal of CO2 transition (R22e), with a measurement averaging time of 8 s, which can be further improved by increasing averaging time in accordance to the Allan deviation analysis for the noise fluctuation. This demonstrates the feasibility of the system for atmospheric investigation and the potential of ground-based, airborne and spaceborne observations for the variation of the global greenhouse gases.

9.
Rev Sci Instrum ; 90(6): 065110, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31255048

ABSTRACT

Robust marine carbon sensors with small size, low power consumption, and high sensitivity provide greater insight into the carbon cycle studies and resolve environmental variability. We report here the development of a diminutively integrated tunable diode laser absorption spectroscopy (TDLAS) system with a specially designed multipass gas cell for small amounts of dissolved gas extractions and measurements. It was used to detect and monitor carbon dioxide (CO2) dissolved in water and seawater. Systematic experiments have been carried out for system evaluation in the lab. Extracted CO2 was determined via its 4989.9 cm-1 optical absorption line. The achieved TDLAS measurement precision was 4.18 ppm for CO2, measured by averaging up to 88 s. The integrated absorbance was found to be linear to gas concentrations over a wide range. Comparison measurements of the atmospheric CO2 values with a commercial instrument confirmed a good accuracy of our TDLAS-based system. The first test campaign was also accomplished with a hollow fiber membrane contactor, and concentrations of CO2 were quantitatively detected with partial degasification operations. The results clearly show the ability to continuously measure dissolved gases and highlight the potential of the system to help us better understand physical and geochemical processes in a marine environment.

10.
Sensors (Basel) ; 18(8)2018 Aug 17.
Article in English | MEDLINE | ID: mdl-30126111

ABSTRACT

We have proposed a sensor for real-time and online measurement of dew/frost point temperature using tunable diode laser absorption spectroscopy (TDLAS) technique. Initial experiments have demonstrated its feasibility and technical advantages in comparison to a chilled mirror hygrometer (CMH). The TDLAS sensor we developed has a dew/frost point temperature range from -93 °C to + 14.5 °C, with a measurement uncertainly of less than 2%, and a response time of about 0.8 s, which is much faster than that of the chilled mirror hygrometer (ranging from several minutes to several hours). A TDLAS-based dew/frost point sensor has many advantages, such as rapid and continuous measurements, low frost point temperature sensing, high accuracy, and non-intrusiveness. Such a sensor would be useful for dew/frost point temperature determinations in various applications. In a cryogenic wind tunnel, real-time dew/frost point temperature measurements are helpful in preventing the formation of condensed liquid and ice, which can affect the model geometry and lead to unreliable test data.

11.
Guang Pu Xue Yu Guang Pu Fen Xi ; 35(10): 2697-702, 2015 Oct.
Article in Chinese | MEDLINE | ID: mdl-26904802

ABSTRACT

We specify water vapor among combustion products as the target gas based on tunable diode absorption spectroscopy in this paper. The direct absorption signals of water vapor after being processed can be used to calculate the gas concentration distributions and temperature distributions of the combustion region of methane and air flat flame furnace via algebraic reconstruction technique (ART). In the numerical simulation, reconstruction region is a grid of five by five, we assume a temperature and water vapor concentration distribution of 25 grid, then simulate different direction laser rays which cross the combustion region, generating projection of each ray, by ART reconstruction algorithm, it turns out that the temperature and water vapor distribution reconstruction error is less than 1%. In the experiment, we chose a distributed-feedback laser to scan the target gas H2O7 153.722, 7 153.748 and 7 154.354 cm(-1) as absorbtion line pair to measure temperature of the flame, we consider the former two line as one absorbtion line. By Stages multi-directional scanning, the authors abtain 16 different regions distributin of temperature and gas concentration of furnace when we collecte 30 different angle data by spectral data processing, reconstruction algorithm, two absorbtion line ratio method for temperature sensing, finding the temperature and water concentration are higher in the center than in the edge, it turns out that the reconstruction algorithm is good enough to achieve the distributions of gas concentration and temperature of the combustion region.

12.
Appl Opt ; 53(28): 6399-408, 2014 Oct 01.
Article in English | MEDLINE | ID: mdl-25322224

ABSTRACT

This paper reports the development of an experimental technique for optical remote sensing of broadband absorbers in ambient air. Broadband absorbers have been difficult to detect due to a lack of narrow absorption features, which makes it hard to separate them from interference with other absorbing species and background. In combination with a multidimensional linear regression procedure, we have developed a further step to correct for water vapor and background influences. Various physical processes limiting the detection sensitivity were studied and solutions were developed to reduce their influences. Although the received optical signal from backscatter was very weak as no corner cube reflector was used, we have demonstrated the technique on remote sensing of broadband absorption of ethanol vapor in ambient air with a moderate detection limit of 200 ppm · m. This portable handheld system is particularly suitable for quick "point-and-measure" applications. The developed technique is also applicable for detection of other broadband absorbers.


Subject(s)
Air Pollutants/analysis , Environmental Monitoring/instrumentation , Gases/analysis , Lasers, Semiconductor , Refractometry/instrumentation , Remote Sensing Technology/instrumentation , Spectroscopy, Near-Infrared/instrumentation , Air Pollutants/chemistry , Equipment Design , Equipment Failure Analysis , Gases/chemistry , Photometry/instrumentation
13.
Opt Express ; 22(11): 13170-89, 2014 Jun 02.
Article in English | MEDLINE | ID: mdl-24921513

ABSTRACT

A continuous-wave, rapidly swept cavity-ringdown spectroscopic technique has been developed for localized atmospheric sensing of trace gases at remote sites. It uses one or more passive open-path optical sensor units, coupled by optical fiber over distances of >1 km to a single transmitter/receiver console incorporating a photodetector and a swept-frequency diode laser tuned to molecule-specific near-infrared wavelengths. Ways to avoid interference from stimulated Brillouin scattering in long optical fibers have been devised. This rugged open-path system, deployable in agricultural, industrial, and natural atmospheric environments, is used to monitor ammonia in air. A noise-limited minimum detectable mixing ratio of ~11 ppbv is attained for ammonia in nitrogen at atmospheric pressure.

14.
Guang Pu Xue Yu Guang Pu Fen Xi ; 34(12): 3174-7, 2014 Dec.
Article in Chinese | MEDLINE | ID: mdl-25881402

ABSTRACT

Tunable diode laser absorption spectroscopy (TDLAS) has been developed to realize the real-time and dynamic measurement of the combustion temperature, gas component concentration, velocity and other flow parameters, owing to its high sensitivity, fast time response, non-invasive character and robust nature. In order to obtain accurate water vapor concentration at high temperature, several absorption spectra of water vapor near 1.39 µm from 773 to 1273 K under ordinary pressure were recorded in a high temperature experiment setup using a narrow band diode laser. The absorbance of high temperature absorption spectra was calculated by combined multi-line nonlinear least squares fitting method. Two water vapor absorption lines near 7154.35 and 7157.73 cm(-1) were selected for measurement of water vapor at high temperature. A model method for high temperature water vapor concentration was first proposed. Water vapor concentration from the model method at high temperature is in accordance with theoretical reasoning, concentration measurement standard error is less than 0.2%, and the relative error is less than 6%. The feasibility of this measuring method is verified by experiment.

15.
Opt Express ; 21(16): 18754-64, 2013 Aug 12.
Article in English | MEDLINE | ID: mdl-23938791

ABSTRACT

We demonstrate long-distance (≥100-km) synchronization of the phase of a radio-frequency reference over an optical-fiber network without needing to actively stabilize the optical path length. Frequency mixing is used to achieve passive phase-conjugate cancellation of fiber-length fluctuations, ensuring that the phase difference between the reference and synchronized oscillators is independent of the link length. The fractional radio-frequency-transfer stability through a 100-km "real-world" urban optical-fiber network is 6 × 10(-17) with an averaging time of 10(4) s. Our compensation technique is robust, providing long-term stability superior to that of a hydrogen maser. By combining our technique with the short-term stability provided by a remote, high-quality quartz oscillator, this system is potentially applicable to transcontinental optical-fiber time and frequency dissemination where the optical round-trip propagation time is significant.

16.
Guang Pu Xue Yu Guang Pu Fen Xi ; 33(4): 881-5, 2013 Apr.
Article in Chinese | MEDLINE | ID: mdl-23841390

ABSTRACT

Tunable diode laser absorption spectroscopy (TDLAS) is a new gas detection technique developed recently with high spectral resolution, high sensitivity and fast time response. The second-harmonic signal of wavelength modulation spectroscopy (WMS) is often used as the detection signal for gas concentration inversion. Using Simulink, a visual modeling and simulation platform, the authors simulated the WMS signal based on TDLAS, and got the second-harmonic signal by using lock-in amplifier algorithm. Digital orthogonal algorithm was studied in this paper. The relationship between second-harmonic signals and the modulation indexes was analyzed by comparing changes of second-harmonic under different modulation indexes, in order to find out the optimized parameters for second-harmonic detection.

17.
Opt Express ; 18(19): 20059-71, 2010 Sep 13.
Article in English | MEDLINE | ID: mdl-20940896

ABSTRACT

The greenhouse-gas molecules CO(2), CH(4), and H(2)O are detected in air within a few ms by a novel cavity-ringdown laser-absorption spectroscopy technique using a rapidly swept optical cavity and multi-wavelength coherent radiation from a set of pre-tuned near-infrared diode lasers. The performance of various types of tunable diode laser, on which this technique depends, is evaluated. Our instrument is both sensitive and compact, as needed for reliable environmental monitoring with high absolute accuracy to detect trace concentrations of greenhouse gases in outdoor air.


Subject(s)
Complex Mixtures/analysis , Gases/analysis , Lasers, Semiconductor , Microchemistry/instrumentation , Spectrophotometry, Infrared/instrumentation , Transducers , Equipment Design , Equipment Failure Analysis
18.
Opt Lett ; 33(20): 2368-70, 2008 Oct 15.
Article in English | MEDLINE | ID: mdl-18923625

ABSTRACT

A novel form of extended-cavity diode laser attains robust tunable single-frequency operation with narrow linewidth. The laser cavity includes a self-pumped photorefractive phase-conjugate reflector for wavelength-adaptive narrowband feedback and a compact high-finesse tunable intracavity ring filter for single-longitudinal-mode selectivity and control. Its performance around 830 nm is verified with a simple Fabry-Perot laser diode and by Doppler-free two-photon spectroscopy in atomic cesium.

19.
Appl Opt ; 44(31): 6752-61, 2005 Nov 01.
Article in English | MEDLINE | ID: mdl-16270564

ABSTRACT

A cavity ringdown spectrometer, based on a continuous-wave swept-frequency laser, enables efficient, rapid recording of wide-ranging absorption spectra as characteristic spectral signatures of airborne molecules. The rapidly swept laser frequency resonates with the longitudinal modes of the ringdown cavity, effectively sampling the absorption spectrum of an intracavity gas at intervals defined by the cavity's free spectral range and generating a full absorption spectrum within a single rapid sweep of the widely tunable laser frequency. We report a new analog detection scheme that registers a single data point for each buildup and ringdown decay event without logging details of the full signal waveform; this minimizes demand on digitizer speed and memory depth, reducing the time scale of data processing. This results in a compact, robust, easy-to-use instrument that offers fresh prospects for spectroscopic sensing of trace species in the atmosphere.

20.
Opt Lett ; 30(24): 3413-5, 2005 Dec 15.
Article in English | MEDLINE | ID: mdl-16389849

ABSTRACT

Narrowband pulsed 822 nm signal radiation from an injection-seeded optical parametric oscillator (OPO) system is used to record fluorescence-detected sub-Doppler two-photon excitation (TPE) spectra of atomic cesium. An optical-heterodyne technique is used to monitor the frequency chirp as well as the fluctuating central frequency of successive OPO output pulses, thereby providing a novel way to record sub-Doppler TPE spectra. The measured TPE linewidth approaches the ultimate limit imposed by the Fourier transform of the pulse's temporal profile, demonstrating the utility of this system for pulsed laser spectroscopy applications that require the highest possible resolution.

SELECTION OF CITATIONS
SEARCH DETAIL
...