Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Mater Today Bio ; 26: 101094, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38854952

ABSTRACT

Cerebral ischemia-reperfusion injury (CIRI) is a major challenge to neuronal survival in acute ischemic stroke (AIS). However, effective neuroprotective agents remain to be developed for the treatment of CIRI. In this work, we have developed an Anti-TRAIL protein-modified and indocyanine green (ICG)-responsive nanoagent (Anti-TRAIL-ICG) to target ischemic areas and then reduce CIRI and rescue the ischemic penumbra. In vitro and in vivo experiments have demonstrated that the carrier-free nanoagent can enhance drug transport across the blood-brain barrier (BBB) in stroke mice, exhibiting high targeting ability and good biocompatibility. Anti-TRAIL-ICG nanoagent played a better neuroprotective role by reducing apoptosis and ferroptosis, and significantly improved ischemia-reperfusion injury. Moreover, the multimodal imaging platform enables the dynamic in vivo examination of multiple morphofunctional information, so that the dynamic molecular events of nanoagent can be detected continuously and in real time for early treatment in transient middle cerebral artery occlusion (tMCAO) models. Furthermore, it has been found that Anti-TRAIL-ICG has great potential in the functional reconstruction of neurovascular networks through optical coherence tomography angiography (OCTA). Taken together, our work effectively alleviates CIRI after stoke by blocking multiple cell death pathways, which offers an innovative strategy for harnessing the apoptosis and ferroptosis against CIRI.

2.
Adv Sci (Weinh) ; : e2403371, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38923850

ABSTRACT

Here, a separation-free and label-free portable aptasensor is developed for rapid and sensitive analysis of tumor-derived exosomes (TEXs). It integrated a parallel rolling circle amplification (RCA) reaction, selective binding of metal ions or small molecules to nucleic acid-specific conformations, and a low-cost, highly sensitive handheld fluorometer. Lung cancer, for example, is targeted with two typical biomarkers (mucin 1 and programmed cell death ligand 1 (PD-L1)) on its exosomes. The affinity of aptamers to the targets modulated the amount of RCA products (T-Hg2+-T and cytosine (C)-rich single-stranded DNA), which in turn affected the fluorescence intensity of quantum dots (QDs) and methylene blue (MB). The results revealed that the limit of detection (LOD) of the handheld fluorometer for cell-derived exosomes can be as low as 30 particles mL-1. Moreover, its specificity, sensitivity, and area under the curve (AUC) are 93% (14/15), 92% (23/25), and 0.956, as determined by the analysis of 40 clinical samples. Retesting 16 of these samples with the handheld fluorometer yielded strong concordance between the fluorometer results and those acquired from clinical computed tomography (CT) and pathology.

3.
Plants (Basel) ; 13(7)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38611517

ABSTRACT

Mixed cultivation with legumes may alleviate the nitrogen (N) limitation of monoculture Eucalyptus. However, how leaf functional traits respond to N in mixed cultivation with legumes and how they affect tree growth are unclear. Thus, this study investigated the response of leaf functional traits of Eucalyptus urophylla × Eucalyptus grandis (E. urophylla × E. grandis) and Dalbergia odorifera (D. odorifera) to mixed culture and N application, as well as the regulatory pathways of key traits on seedling growth. In this study, a pot-controlled experiment was set up, and seedling growth indicators, leaf physiology, morphological parameters, and N content were collected and analyzed after 180 days of N application treatment. The results indicated that mixed culture improved the N absorption and photosynthetic rate of E. urophylla × E. grandis, further promoting seedling growth but inhibiting the photosynthetic process of D. odorifera, reducing its growth and biomass. Redundancy analysis and path analysis revealed that leaf nitrogen content, pigment content, and photosynthesis-related physiological indicators were the traits most directly related to seedling growth and biomass accumulation, with the net photosynthetic rate explaining 50.9% and 55.8% of the variation in growth indicators for E. urophylla × E. grandis and D. odorifera, respectively. Additionally, leaf morphological traits are related to the trade-off strategy exhibited by E. urophylla × E. grandis and D. odorifera based on N competition. This study demonstrated that physiological traits related to photosynthesis are reliable predictors of N nutrition and tree growth in mixed stands, while leaf morphological traits reflect the resource trade-off strategies of different tree species.

4.
Front Oncol ; 14: 1334631, 2024.
Article in English | MEDLINE | ID: mdl-38496762

ABSTRACT

The 3D culture of intestinal organoids entails embedding isolated intestinal crypts and bone marrow mesenchymal stem cells within a growth factor-enriched matrix gel. This process leads to the formation of hollow microspheres with structures resembling intestinal epithelial cells, which are referred to as intestinal organoids. These structures encompass various functional epithelial cell types found in the small intestine and closely mimic the organizational patterns of the small intestine, earning them the name "mini-intestines". Intestinal tumors are prevalent within the digestive system and represent a significant menace to human health. Through the application of 3D culture technology, miniature colorectal organs can be cultivated to retain the genetic characteristics of the primary tumor. This innovation offers novel prospects for individualized treatments among patients with intestinal tumors. Presently established libraries of patient-derived organoids serve as potent tools for conducting comprehensive investigations into tissue functionality, developmental processes, tumorigenesis, and the pathobiology of cancer. This review explores the origins of intestinal organoids, their culturing environments, and their advancements in the realm of precision medicine. It also addresses the current challenges and outlines future prospects for development.

5.
ACS Nano ; 18(6): 5017-5028, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38305181

ABSTRACT

Herein, we propose a paper-based laboratory via enzyme-free nucleic acid amplification and nanomaterial-assisted cation exchange reactions (CERs) assisted single-cell-level analysis (PLACS). This method allowed for the rapid detection of mucin 1 and trace circulating tumor cells (CTCs) in the peripheral blood of lung cancer patients. Initially, an independently developed method requiring one centrifuge, two reagents (lymphocyte separation solution and erythrocyte lysate), and a three-step, 45 min sample pretreatment was employed. The core of the detection approach consisted of two competitive selective identifications: copper sulfide nanoparticles (CuS NPs) to C-Ag+-C and Ag+, and dual quantum dots (QDs) to Cu2+ and CuS NPs. To facilitate multimodal point-of-care testing (POCT), we integrated solution visualization, test strip length reading, and a self-developed hand-held fluorometer readout. These methods were detectable down to ag/mL of mucin 1 concentration and the single-cell level. Forty-seven clinical samples were assayed by fluorometer, yielding 94% (30/32) sensitivity and 100% (15/15) specificity with an area under the curve (AUC) of 0.945. Nine and 15 samples were retested by a test strip and hand-held fluorometer, respectively, with an AUC of 0.95. All test results were consistent with the clinical imaging and the folate receptor (FR)-PCR kit findings, supporting its potential in early diagnosis and postoperative monitoring.


Subject(s)
Lung Neoplasms , Neoplastic Cells, Circulating , Humans , Lung Neoplasms/pathology , Neoplastic Cells, Circulating/pathology , Mucin-1/genetics , Liquid Biopsy , Nucleic Acid Amplification Techniques
6.
Nat Commun ; 15(1): 156, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38168054

ABSTRACT

Cell-free RNAs (cfRNAs) offer an opportunity to detect diseases from a transcriptomic perspective, however, existing techniques have fallen short in generating a comprehensive cell-free transcriptome profile. We develop a sensitive library preparation method that is robust down to 100 µl input plasma to analyze cfRNAs independent of their 5'-end modifications. We show that it outperforms adapter ligation-based method in detecting a greater number of cfRNA species. We perform transcriptome-wide characterizations in 165 lung cancer, 30 breast cancer, 37 colorectal cancer, 55 gastric cancer, 15 liver cancer, and 133 cancer-free participants and demonstrate its ability to identify transcriptomic changes occurring in early-stage tumors. We also leverage machine learning analyses on the differentially expressed cfRNA signatures and reveal their robust performance in cancer detection and classification. Our work sets the stage for in-depth study of the cfRNA repertoire and highlights the value of cfRNAs as cancer biomarkers in clinical applications.


Subject(s)
Cell-Free Nucleic Acids , Lung Neoplasms , Humans , Cell-Free Nucleic Acids/genetics , Lung Neoplasms/diagnosis , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Transcriptome/genetics , Gene Expression Profiling/methods , Sequence Analysis, RNA/methods , RNA , Biomarkers, Tumor/genetics
7.
Biosens Bioelectron ; 246: 115865, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38035517

ABSTRACT

A homogeneous rapid (45 min) one-pot electrochemical (EC) aptasensor was established to quantitatively detect circulating tumor cells (CTCs) in lung cancer patients using mucin 1 as a marker. The core of this study is that the three single-stranded DNA (Y1, Y2, and Y3) could be hybridized to form Y-shaped DNA (Y-DNA) and further self-assemble to form DNA nanosphere. The aptamer of mucin 1 could be complementary and paired with Y1, thus disrupting the conformation of the DNA nanosphere. When mucin 1 was present, the aptamer combined specifically with mucin 1, thus preserving the DNA nanosphere structure. Methylene blue (MB) acted as a signal reporter, which could be embedded between two base pairs in the DNA nanosphere to form a DNA nanosphere-MB complex, reducing free MB and resulting in a lower electrochemical signal. The results demonstrated that the linear ranges for mucin 1 and A549 cells were 1 ag/mL-1 fg/mL and 1-100 cells/mL, respectively, with minimum detectable concentrations were 1 ag/mL and 1 cell/mL, respectively. The quantitative analysis of CTCs in 44 clinical blood samples was performed, and the results were consistent with the computerized tomography (CT) images, pathological findings and folate receptor-polymerase chain reaction (FR-PCR) kits. The receiver operating characteristic (ROC) curve exhibited an area under the curve (AUC) value of 0.970. The assay revealed 100% specificity and 94.1% sensitivity. It is believed that this electrochemical aptasensor could provide a new approach to detect CTCs.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Lung Neoplasms , Neoplastic Cells, Circulating , Humans , Mucin-1/analysis , Lung Neoplasms/diagnosis , Limit of Detection , Aptamers, Nucleotide/chemistry , Electrochemical Techniques/methods , Biosensing Techniques/methods , DNA/chemistry , Methylene Blue/chemistry
8.
Anal Chem ; 95(38): 14244-14252, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37705297

ABSTRACT

The effective enrichment and hypersensitivity analysis of circulating tumor cells (CTCs) in clinical whole blood samples are highly significant for clinical tumor liquid biopsy. In this study, we established an easy operation and affordable CTCs extraction technique while simultaneously performing the homogeneous inductively coupled plasma mass spectrometry (ICP-MS) determination of CTCs in lung cancer clinical samples based on selective recognition reactions and prereduction phenomena. Our strategy allowed for the pretreatment of whole blood samples in less than 45 min after step-by-step centrifugation, which only required lymphocyte separation solution and erythrocyte lysate. Furthermore, a three-stage signal amplification system consisting of catalytic hairpin assembly (CHA), selective recognition for C-Ag+-C structures and Ag+ of copper sulfide nanoparticles (CuS NPs), and prereduction of Hg2+ through ascorbic acid (AA) was constructed by using mucin 1 as the CTCs marker and the aptamer for identification probes. In optimal conditions, the detection limits of ICP-MS were as low as 0.3 ag/mL for mucin 1 and 0.25 cells/mL for A549 cells. This method analyzed CTCs in 58 clinical samples quantitatively, and the results were consistent with clinical CT images and pathological findings. The area under the curve (AUC) value of the receiver operating characteristic (ROC) curve was 0.957, which provided a specificity of 100% and a sensitivity of 91.5% for the assay. Therefore, the simplicity of the extraction method, the accessibility, and the high sensitivity of the assay method make the strategies attractive for clinical CTCs testing applications.


Subject(s)
Lung Neoplasms , Mucin-1 , Humans , Lung Neoplasms/diagnosis , A549 Cells , Area Under Curve , Liquid Biopsy
9.
Epigenetics Chromatin ; 16(1): 33, 2023 09 23.
Article in English | MEDLINE | ID: mdl-37740218

ABSTRACT

BACKGROUND: Breast cancer, the most common malignancy in women worldwide, has been proven to have both altered plasma cell-free DNA (cfDNA) methylation and fragmentation profiles. Nevertheless, simultaneously detecting both of them for breast cancer diagnosis has never been reported. Moreover, although fragmentation pattern of cfDNA is determined by nuclease digestion of chromatin, structure of which may be affected by DNA methylation, whether cfDNA methylation and fragmentation are biologically related or not still remains unclear. METHODS: Improved cfMeDIP-seq were utilized to characterize both cfDNA methylation and fragmentation profiles in 49 plasma samples from both healthy individuals and patients with breast cancer. The feasibility of using cfDNA fragmentation profile in hypo- and hypermethylated regions as diagnostic markers for breast cancer was evaluated. RESULTS: Mean size of cfDNA fragments (100-220 bp) mapped to hypomethylated regions decreased more in patients with breast cancer (4.60 bp, 172.33 to 167.73 bp) than in healthy individuals (2.87 bp, 174.54 to 171.67 bp). Furthermore, proportion of short cfDNA fragments (100-150 bp) in hypomethylated regions when compared with it in hypermethylated regions was found to increase more in patients with breast cancer in two independent discovery cohort. The feasibility of using abnormality of short cfDNA fragments ratio in hypomethylated genomic regions for breast cancer diagnosis in validation cohort was evaluated. 7 out of 11 patients were detected as having breast cancer (63.6% sensitivity), whereas no healthy individuals were mis-detected (100% specificity). CONCLUSION: We identified enriched short cfDNA fragments after 5mC-immunoprecipitation (IP) in patients with breast cancer, and demonstrated the enriched short cfDNA fragments might originated from hypomethylated genomic regions. Furthermore, we proved the feasibility of using differentially methylated regions (DMRs)-dependent cfDNA fragmentation profile for breast cancer diagnosis.


Subject(s)
Breast Neoplasms , Cell-Free Nucleic Acids , Humans , Female , Breast Neoplasms/diagnosis , Breast Neoplasms/genetics , DNA Methylation , Cell-Free Nucleic Acids/genetics , Chromatin , Genomics
10.
ACS Nano ; 17(7): 6998-7006, 2023 04 11.
Article in English | MEDLINE | ID: mdl-37010068

ABSTRACT

Lipoarabinomannan (LAM) is a prospective noninvasive biomarker for tuberculosis (TB) diagnosis. Here, we report a visual immunoassay of high sensitivity for detecting LAM in urine samples toward TB diagnosis. This method uses a DNA-linked immunosorbent of LAM, followed by a transduction cascade into amplified visual signals using quantum dots (QDs) and calcein reaction with Cu2+ and copper nanoparticles (Cu NPs). The limit of detection (LOD) for LAM in the urine reaches 2.5 fg/mL and 25 fg/mL using a fluorometer and length readouts on strips, respectively, demonstrating an ultrahigh sensitivity. The clinical validation of the proposed assay was performed with 147 HIV-negative clinical urine specimens. The results show the sensitivity of test is 94.1% (16/17) for confirmed TB (culture-positive) and 85% (51/60) for unconfirmed TB (clinical diagnosis without positive culture results), respectively, when the test cutoff value is 40 fg/mL for TB. Its specificity is 89.2% (25/28) in non-TB and nontuberculous mycobacterial patients. The area under the curve (AUC) was 0.86 when controls were non-TB and LTBI patients, while the AUC was 0.92 when controls were only non-TB patients. This highly sensitive visual immunoassay of LAM has shown potential for noninvasive diagnosis of TB using urine samples.


Subject(s)
HIV Infections , Mycobacterium tuberculosis , Tuberculosis , Humans , Prospective Studies , Sensitivity and Specificity , Tuberculosis/diagnosis , Lipopolysaccharides , Immunoassay , HIV Infections/diagnosis
11.
Contrast Media Mol Imaging ; 2022: 2387192, 2022.
Article in English | MEDLINE | ID: mdl-35935327

ABSTRACT

Chemokine C-C motif chemokine ligand 3 (CCL3) plays an important role in the invasion and metastasis of malignant tumors. For developing new therapeutic targets and antitumor drugs, the effect of chemokine CCL3 and the related cytokine network on colorectal cancer should be investigated. This study used cell, tissue, and animal experiments to prove that CCL3 is highly expressed in colorectal cancer and confirmed that CCL3 can promote the proliferation of cancer cells, and its expression is closely related to TRAF6/NF-κB molecular pathway. In addition, protein chip technology was used to examine colorectal cancer tissue samples and identify the key factors of chemokine CCL3 and the toll-like receptors/nuclear factor-κB (TLR/NF-κB) pathway in cancer and metastatic lymph nodes. Furthermore, the lentiviral vector technology was employed for transfection to construct interference and overexpression cell lines. The experimental results reveal the mechanism of CCL3 and TNF receptor-associated factor 6 (TRAF6)/NF-κB pathway-related factors and their effects on the proliferation of colon cancer cells. Finally, the expression and significance of CCL3 in colorectal cancer tissues and its correlation with clinical pathology were studied by immunohistochemistry. Also, the results confirmed that CCL3 and C-C motif chemokine receptor 5 (CCR5) were expressed in adjacent tissues, colorectal cancer tissues, and metastatic cancer. The expression level was correlated with the clinical stage and nerve invasion. The expression of chemokine CCL3 and receptor CCR5 was positively correlated with the expression of TRAF6 and NF-κB and could promote the proliferation, invasion, and migration of colorectal cancer cells through TRAF6 and NF-κB.


Subject(s)
Colorectal Neoplasms , NF-kappa B , Animals , Cell Line, Tumor , Cell Movement , Cell Proliferation , Chemokine CCL3/metabolism , Chemokine CCL3/pharmacology , Colorectal Neoplasms/pathology , NF-kappa B/metabolism , NF-kappa B/pharmacology , TNF Receptor-Associated Factor 6/metabolism , TNF Receptor-Associated Factor 6/pharmacology
12.
Anal Chem ; 94(25): 9122-9129, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35694824

ABSTRACT

Although there are many interferon gamma (IFN-γ)-based tools for tuberculosis (TB) diagnosis, they are less sensitive and laborious. Here, we developed an IFN-γ aptasensor using pyrophosphate-cerium coordination polymeric nanoparticles (PPi-Ce CPNs) as signal reporters and a double-stranded DNA as a probe. The sensor was realized by sterically regulating the polymerization elongation of terminal deoxynucleotidyl transferase (TdT) and the selective recognition reaction of PPi-Ce CPNs. This method employs PPi-Ce CPNs to selectively identify Cu2+ and polyT-templated copper nanoparticles (Cu NPs), as well as a TdT-assisted amplification technique. Our data showed that under optimized experimental conditions, a limit of detection of as low as 0.25 fg/mL was achieved, with a linear range of 1-100 fg/mL, and a good target protein specificity. The detection sensitivity was an order of magnitude higher than that observed with Cu NPs when used as signal reporters. This IFN-γ quantification technique was further validated in clinical samples using 57 clinical TB patients (22 negative and 35 positive). Our findings agreed with those from enzyme-linked immunosorbent assay, GeneXpert MTB/rifampin assay, and polymerase chain reaction detection of TB-DNA and those from clinical imaging techniques. Therefore, our analytical system may provide an additional and more sensitive tool for the early diagnosis of TB.


Subject(s)
Interferon-gamma , Tuberculosis , Copper , DNA , Humans , Rifampin , Tuberculosis/diagnosis
13.
Nano Lett ; 22(4): 1710-1717, 2022 02 23.
Article in English | MEDLINE | ID: mdl-35119287

ABSTRACT

Here, we report a simple aptamer-based toxoid test with both fluorescence and binary visual readouts. This test is established based on our recent finding that CdTe quantum dots could differentiate DNA templated Cu NPs from Cu2+. Through the further integration with enzyme-free triple parallel hybridization chain reaction, cation exchange reaction, and inkjet printing, we demonstrated specific detection of tetanus toxoid with a limit-of-detection (LOD) of 0.25 fg/mL using fluorescence readout. Using color- and distance-based binary visual readouts, we were able to achieve LODs of 10 fg/mL and 1 fg/mL, respectively. The quantitative test results for tetanus toxoid using both fluorescence and visual readouts were successfully validated in 84 clinical serum samples. Moreover, our strategy also enabled accurate monitoring of tetanus toxoid levels in patients before and after drug treatment. On the basis of our clinical test results, we recommend a cutoff value of 5 fg/mL for tetanus infection.


Subject(s)
Cadmium Compounds , Quantum Dots , Humans , Tellurium , Tetanus Toxoid
14.
Biosens Bioelectron ; 202: 114009, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35065481

ABSTRACT

Oncology detection technology is significant for the early detection of tumors. The current study reports a new method that uses folate receptor (FR) as circulating tumor cells (CTCs) marker and only folate modified T30 as a probe. This method also uses dual-enzyme assisted amplification strategy for homogeneous fluorescence as well as two-dimensional visual (color and distance) detection of SMMC-7721 liver cancer cells from clinical blood samples. This work was based on the steric hindrance caused by binding between FR and folate to regulate cleavage of folate-T30 by exonuclease I (Exo I) and to inhibit subsequent polymerization and extension reaction of the cleavage product by terminal deoxynucleotidyl transferase (TdT). It explores the use of CdTe QDs to selectively identify Cu2+ and polyT-template Cu NPs as a bridge combined with inkjet printing technology to make test strips that can be read through distance changes. Under fluorometer mode, limit of detection as low as 1 cells/mL was achieved. The color and distance reading modes can identify cells with concentrations as low as 5 and 1 cells/mL, respectively. This CTCs detection approach of fluorescence mode was further validated by using 50 clinical samples of liver cancer patients (19 negative and 31 positive). The results were in good agreement with FR-polymerase chain reaction (FR-PCR) kits, radiologic and pathological techniques. In addition, the quantitative results of distance reading test strips of CTCs in 22 clinical samples (8 negative and 14 positive) were also in 100% agreement with the findings of clinical kits, computed tomography (CT) and pathological tests.


Subject(s)
Biosensing Techniques , Cadmium Compounds , Neoplastic Cells, Circulating , Quantum Dots , Humans , Neoplastic Cells, Circulating/pathology , Tellurium
15.
Adv Sci (Weinh) ; 8(16): e2101242, 2021 08.
Article in English | MEDLINE | ID: mdl-34166580

ABSTRACT

Tumor angiogenesis is a complex process that is unamenable to intravital whole-process monitoring, especially on microscopic assessment of tumor microvessel and quantifying microvascular hemodynamics before and after the nanotherapeutics, which hinder the understanding of nanotheranostics outcomes in tumor treatment. Herein, a new photoacoustic (PA) imaging-optical coherence tomography angiography (OCTA)-laser speckle (LS) multimodal imaging strategy is first proposed, which is not only able to precisely macro guide the thermo-chemotherapy of tumor by monitoring blood oxygen saturation (SaO2 ) and hemoglobin content (HbT), but also capable of long-term microscopic investigating the microvessel morphology (microvascular density) and hemodynamics changes (relative blood flow) before and after the nanotherapeutics in vivo. Moreover, to realize the tumor thermo-chemotherapy treatment based on this novel multimodal imaging strategy, a 2D 5-fluorouracil silicon nanosheets (5-Fu-Si NSs) therapeutic agent is designed. Furthermore, 2D high-resolution tumor microvascular images in different stage display that tendency of the thermo-chemotherapy effect is closely associated with tumor angiogenesis. Taken together, the investigations establish the fundamental base in theory and technology for further tailoring the novel specific diagnosis and treatment strategy in tumor. More importantly, this technique will be beneficial to evaluate the tumor microvascular response to nanotherapeutics at microscale.


Subject(s)
Antimetabolites, Antineoplastic/therapeutic use , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/drug therapy , Glioma/diagnostic imaging , Glioma/drug therapy , Photoacoustic Techniques/methods , Tomography, Optical Coherence/methods , Animals , Disease Models, Animal , Fluorouracil/therapeutic use , Humans , Male , Mice , Mice, Inbred BALB C , Multimodal Imaging/methods , Nanostructures/therapeutic use , Oxygen Saturation , Silicon/therapeutic use
16.
ACS Nano ; 15(7): 11634-11643, 2021 Jul 27.
Article in English | MEDLINE | ID: mdl-34129315

ABSTRACT

Here we report a simple all-nucleic-acid enzyme-free catalyzed hairpin assembly assisted amplification strategy with quantum dots (QDs) as the nanoscale signal reporter for homogeneous visual and fluorescent detection of A549 lung cancer cells from clinical blood samples. This work was based on the phenomenon that CdTe QDs can selectively recognize Ag+ and C-Ag+-C and by using mucin 1 as the circulating tumor cells (CTCs) marker and aptamer as the recognition probe. Under optimized conditions, the limits of detections as low as 0.15 fg/mL of mucin 1 and 3 cells/mL of A549 cells were achieved with fluorescence signals. A 1 fg/mL concentration of mucin 1 and 100 cells/mL of A549 can be distinguished by the naked eye. This method was used to quantitatively analyze CTCs in 51 clinical whole blood samples of patients with lung cancer. The levels of CTCs detected in clinical samples by this method were consistent with those obtained using the folate receptor-polymerase chain reaction clinical test kit and correlated with radiologic and pathological findings.


Subject(s)
Cadmium Compounds , Lung Neoplasms , Neoplastic Cells, Circulating , Quantum Dots , Humans , Tellurium , Mucin-1 , Spectrometry, Fluorescence/methods , Lung Neoplasms/diagnostic imaging , Limit of Detection
17.
Open Life Sci ; 16(1): 408-418, 2021.
Article in English | MEDLINE | ID: mdl-33981848

ABSTRACT

Colorectal cancer (CRC) is one of the most frequently diagnosed cancers worldwide and stands among the leading causes of cancer-related deaths. Although deregulation of the microbiota in the gastrointestinal tract has been frequently described in CRC, very little is known about the precise molecular mechanisms by which bacteria and their toxins modulate the process of tumorigenesis and behavior of cancer cells. In this study, we produced recombinant Bacteroides fragilis enterotoxin-1 (rBFT1) and demonstrate that rBFT1 could promote cell proliferation in colorectal cancer cells and accelerate tumor growth in vivo. To identify the mechanisms, we further investigated CCL3/CCR5 and NF-κB pathway. We found that CCL3, CCR5, NF-κB, and TRAF-6 were dramatically upregulated after rBFT1 treatment, thus suggesting that the role of rBFT1 in CRC progression may be associated with CCL3/CCR5 and NF-κB pathways. Collectively, our results indicate that rBFT1 serves as a tumor promoter and plays a crucial role in inducing the proliferation of CRC via accelerating CCL3-related molecular pathway, thus giving insights into mechanistic underpinnings for the prevention and treatment of CRC.

18.
Anal Chim Acta ; 1138: 141-149, 2020 Nov 22.
Article in English | MEDLINE | ID: mdl-33161975

ABSTRACT

Taking advantage of the superior biocompatibility, good stability in a wide pH and temperature range, as well as its strong affinity with DNA of hydroxyapatite (HAp), tetrahedral DNA nanostructures (TDNs) conjugated with AS1411 aptamer (anti-nucleolin overexpressed on tumor cell membranes) were employed as affinity ligands to construct a novel mono-dispersed HAp based probe with Gd3+ doping (Apt-TDNs-GdHAp) for MR imaging. The adsorption of TDNs on the nano-HAp surface facilely accomplished the construction of the Apt-TDNs-GdHAp probes. Meanwhile, the use of hydrophilic TDNs not only favored the phase-transfer from the oil phase to the aqueous phase, but also enhanced the mono-dispersion of this probe due to the well-ordered distribution of TDNs on the surface of nano-HAp. Moreover, Apt-TDNs-GdHAp probe with a better mono-dispersion and crystalinity achieved twice higher longitudinal relaxivity (r1 value) than that of GdHAp synthesized by microwave-assisted method (Microwave-GdHAp), exhibiting much more excellent T1-weighted imaging performance. With the introduction of TDNs, the stability and the tumor-targeting accessibility were also greatly improved, showing its great potential for further bio-applications.


Subject(s)
Nanostructures , Neoplasms , DNA , Durapatite , Humans , Magnetic Resonance Imaging
19.
Animals (Basel) ; 10(7)2020 Jul 07.
Article in English | MEDLINE | ID: mdl-32645955

ABSTRACT

Paper mulberry (Broussonetia papyrifera; PM) is an excellent and extensive type of roughage in Asia. This study aimed to evaluate the effects of PM silage on the milk production, apparent digestibility, antioxidant capacity, and fecal bacteria composition in Holstein dairy cows. Forty-five lactating Holstein dairy cows with a similar milk yield and parity were selected and randomly assigned to three groups. The control group was fed a non-PM silage diet, and the PM-treated groups were fed 4.5 and 9.0% PM silage supplementary diets for 28 days. Then, treatment groups were fed diets containing 13.5 and 18.0% PM silage for the next 28 days, respectively. PM silage increased the milk urea nitrogen and decreased the somatic cell count (p < 0.05), but did not affect the dry matter intake, milk yield, apparent digestibility, and energy balance of dairy cows. PM silage can enhance the blood total antioxidant capacity, superoxide dismutase, and immune globulin content (p < 0.05). The PM silage significantly decreased the relative abundance of the genera Ruminococcaceae UCG-013 and Tyzzerella-4 (p < 0.05). In conclusion, PM silage enhanced the antioxidant capacity and immunity of dairy cows, but did not influence the milk yield, dry matter digestibility, and fecal bacteria composition.

20.
Mikrochim Acta ; 187(5): 261, 2020 04 05.
Article in English | MEDLINE | ID: mdl-32249330

ABSTRACT

In this work, a novel bi-modal imaging probe with enhanced CT contrast efficiency and FL brightness was constructed, in which the combination of a binary CT contrast agent BaHoF5 and Cu-doped QDs served as a vehicle; hyaluronic acid (HA) was employed as a tumor-targeting ligand. With its CT contrast efficiency about 2.1- and 3.9-fold higher than PEG-BaHoF5 and Iohexol, the CT contrast efficiency and the fluorescent brightness of the bi-modal probe were both enhanced. Likewise, its fluorescent brightness is almost 6-fold brighter after Cu-doped QDs loading. The most important contribution of this work lies on the proposed strategy. The inherent contradiction of the imaging sensitivity of CT and FL imaging is well balanced and a great CT/FL bi-modal imaging performance is simultaneously obtained even at low concentration (400 µg/mL) of the probe, which was superior to the previous CT/FL bi-modal probes. Moreover, since BaHoF5 as a binary CT contrast agent was introduced instead of conventional Au and Bi2S3, the CT/FL bi-modal probe would be more suitable for different patients under different operation voltages. In addition, the in vitro tumor cell imaging also demonstrated a good photo-stability, FL brightness, and tumor-targeting capability of the probe, indicating its great potential in practical bi-modal imaging for further tumor diagnosis and therapy. Graphical abstract A novel bi-modal imaging probe with enhanced CT contrast efficiency and FL brightness was fabricated, in which its CT contrast efficiency was about 2.1- and 3.9-fold higher than PEG-BaHoF5 and Iohexol, respectively, and its fluorescent brightness almost 6-fold brighter after Cu-doped QDs loading.


Subject(s)
Contrast Media/chemistry , Fluorescent Dyes/chemistry , Quantum Dots/chemistry , Cell Line, Tumor , Contrast Media/toxicity , Copper/chemistry , Copper/toxicity , Fluorescent Dyes/toxicity , Holmium/chemistry , Holmium/toxicity , Humans , Hyaluronic Acid/chemistry , Hyaluronic Acid/toxicity , Microscopy, Fluorescence/methods , Quantum Dots/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...