Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
Add more filters










Publication year range
1.
Nucleic Acids Res ; 52(5): 2142-2156, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38340342

ABSTRACT

Human DNA topoisomerase 1 (Top1) is a crucial enzyme responsible for alleviating torsional stress on DNA during transcription and replication, thereby maintaining genome stability. Previous researches had found that non-working Top1 interacted extensively with chromosomal DNA in human cells. However, the reason for its retention on chromosomal DNA remained unclear. In this study, we discovered a close association between Top1 and chromosomal DNA, specifically linked to the presence of G-quadruplex (G4) structures. G4 structures, formed during transcription, trap Top1 and hinder its ability to relax neighboring DNAs. Disruption of the Top1-G4 interaction using G4 ligand relieved the inhibitory effect of G4 on Top1 activity, resulting in a further reduction of R-loop levels in cells. Additionally, the activation of Top1 through the use of a G4 ligand enhanced the toxicity of Top1 inhibitors towards cancer cells. Our study uncovers a negative regulation mechanism of human Top1 and highlights a novel pathway for activating Top1.


Subject(s)
DNA Topoisomerases, Type I , G-Quadruplexes , Transcription, Genetic , Humans , DNA/chemistry , DNA Replication , DNA Topoisomerases, Type I/metabolism , Ligands , Topoisomerase I Inhibitors/pharmacology
3.
J Nanobiotechnology ; 21(1): 471, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38062466

ABSTRACT

The exploration of cell response to nanotopography has attracted considerable attentions for years. This article focuses on the influence of nanotopography on the intracellular Ca2+ dynamics, the most ubiquitous but ignored second messenger. The classic titanium nanotubes (NT) were fabricated by anodization to formulate nanoporous surfaces. Firstly, the store operative calcium entry (SOCE) in endoplasmic reticulum (ER) and functional Ca2+ release-activated Ca2+ (CRAC) channels were significantly enhanced on NT surfaces that revealed by live-cell Ca2+ imaging and fluorescence resonance energy transfer (FRET) identification of orai1-stim1 connection. To investigate the potential implication of Ca2+ elevation, the dynamic cell migration trajectory was monitored by a self-made holder, which could not only be suitable for the opaque implant surface but also guarantee the focus fields identical during samples shifting. The cell migration on NT surface was more vigorous and rapid, which was correlated with higher focal adhesion proteins expression, Ca2+-dependent calpain activity and stim1 level. In conclusion, this study has confirmed the novel ER Ca2+ hemostasis pathway on nanosurfaces and its crucial role in cell migration regulation, which may help for more biofavorable implant surface design.


Subject(s)
Calcium Channels , Calcium , Calcium/metabolism , Calcium Channels/metabolism , Membrane Proteins/metabolism , Calcium Signaling
4.
Environ Toxicol Pharmacol ; 104: 104314, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37979633

ABSTRACT

Pharmaceutical active compounds (PhACs) have raised concerns in the last decade due to their increased consumption and inadequate elimination during discharge, resulting in their introduction into water systems and potential significant threats to non-target organisms. However, few studies have investigated the sublethal impacts of PhAC exposure on marine invertebrates. Thus, the present study aimed to assess tissue-specific responses in Mytilus galloprovincialis to sodium lauryl sulfate (SLS), salicylic acid (SA), and caffeine (CAF) (4.0 mg/L, 4.0 mg/L and 2.0 µg/L, respectively). Short-term in vitro exposures with mussel digestive gland and gill tissues were conducted and biochemical responses related to antioxidant and detoxification capacity, cellular damage and neurotoxicity were assessed. The present results clearly showed significant differences in tissue sensitivity and biochemical responses to the contaminants tested. This study highlights the suitability of filter-feeder species as valuable model organisms for studying the sublethal effects of unintended environmental exposures to PhACs.


Subject(s)
Mytilus , Water Pollutants, Chemical , Animals , Antioxidants/pharmacology , Environmental Exposure , Aquatic Organisms/metabolism , Pharmaceutical Preparations , Water Pollutants, Chemical/analysis , Gills , Biomarkers/metabolism , Oxidative Stress
5.
Article in English | MEDLINE | ID: mdl-37149013

ABSTRACT

Surfactants are among the most common PPCPs that reach coastal systems, being often used in large quantities in cleaning products such as detergents and soap powders. Sodium lauryl sulfate (SLS) is listed in this group of emerging contaminants. Previous studies have already demonstrated the presence of SLS in aquatic environments and the negative effects on organisms living there. However, with ocean acidification and warming predictions, SLS-induced impacts may differ from those currently known. In this context, the present study aimed to reproduce environmental conditions by assessing the release of substances over a short period and to understand the influence of a rapid increase in temperature on the impacts caused. The marine bivalve Mytilus galloprovincialis was exposed to 2.0 mg/L SLS at 17 °C and 21 °C for 7 days. To assess the possible biochemical changes resulting from the exposure of mussels to SLS, a series of biomarkers related to oxidative stress/damage, detoxification, and metabolic capacity were measured. The SLS accumulation in soft tissues was low (about 0.7 ng/g) at both temperatures. The results evidenced increased metabolic activity, especially in mussels exposed to SLS at 17 °C. An increase in protein content was also observed upon exposure to SLS and increased temperature compared to controls at 17 °C. Although no effects on antioxidant enzymes were observed, protein damage was recorded, especially at 21 °C. These findings confirmed that SLS induces toxic effects and predicted climate change factors may increase the impact on M. galloprovincialis.


Subject(s)
Mytilus , Water Pollutants, Chemical , Animals , Temperature , Sodium Dodecyl Sulfate/toxicity , Hydrogen-Ion Concentration , Seawater , Water Pollutants, Chemical/metabolism , Oxidative Stress , Biomarkers/metabolism
6.
Environ Sci Pollut Res Int ; 30(25): 67596-67607, 2023 May.
Article in English | MEDLINE | ID: mdl-37115439

ABSTRACT

Polystyrene microplastics (PS MPs) and carbamazepine (CBZ) are frequently detected in freshwater ecosystems. However, the transgenerational effects of PS MPs and CBZ on the reproduction of aquatic organisms and the corresponding mechanisms are still unclear. In the present study, Daphnia magna was used to evaluate the reproductive toxicity in two consecutive generations (F0, F1). The molting and reproduction parameters, the expression of reproduction, and the toxic metabolism genes were examined after 21-day exposure. A significantly enhanced toxicity was observed in the presence of 5 µm PS MPs and CBZ. Chronic exposure results showed that the 5 µm PS MPs alone, CBZ alone, and their mixtures exerted significant reproductive toxicity of D. magna. The results of RT-qPCR showed transcripts of genes related to reproduction (cyp314, ecr-b, cut, vtg1, vtg2, dmrt93b) and toxic metabolism (cyp4, gst) were altered in both the F0 and F1. In addition, for the F0, gene transcriptional changes of reproduction were not fully translated into physiological performance, probably due to the compensatory responses caused by the low dose of PS MPs alone, CBZ alone, and their mixtures. Whereas for the F1, the trade-off between reproduction and toxic metabolism at gene levels was observed, which translated into a significant reduction in the total neonate number of F1. These findings suggest that long-term exposure to MPs and CBZ can cause serious reproduction damage to aquatic animals, which needs to be given sufficient attention.


Subject(s)
Microplastics , Water Pollutants, Chemical , Animals , Plastics , Polystyrenes , Daphnia , Ecosystem , Water Pollutants, Chemical/toxicity , Reproduction , Carbamazepine/toxicity
7.
Regen Biomater ; 10: rbad012, 2023.
Article in English | MEDLINE | ID: mdl-36915712

ABSTRACT

The comprehensive recognition of communications between bone marrow mesenchymal stem cells (bm-MSCs) and macrophages in the peri-implant microenvironment is crucial for implantation prognosis. Our previous studies have clarified the indirect influence of Ti surface topography in the osteogenic differentiation of bm-MSCs through modulating macrophage polarization. However, cell communication is commutative and multi-directional. As the immune regulatory properties of MSCs have become increasingly prominent, whether bm-MSCs could also play an immunomodulatory role on macrophages under the influence of Ti surface topography is unclear. To further illuminate the communications between bm-MSCs and macrophages, the bm-MSCs inoculated on Ti with nanoporous topography were indirectly co-cultured with macrophages, and by blocking exosome secretion or extracting the purified exosomes to induce independently, we bidirectionally confirmed that under the influence of TiO2 nanoporous topography with 80-100 nm tube diameters, bm-MSCs can exert immunomodulatory effects through exosome-mediated paracrine actions and induce M1 polarization of macrophages, adversely affecting the osteogenic microenvironment around the implant. This finding provides a reference for the optimal design of the implant surface topography for inducing better bone regeneration.

8.
Aquat Toxicol ; 257: 106431, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36827831

ABSTRACT

Thyroid disrupting chemicals (TDCs) have received much attention due to their potential adverse effects on animal and human health, which calls for rapid screen assays to identify them. The triiodothyronine (T3)-induced Xenopus metamorphosis assay (TiXMA) we developed previously has been successfully applied to the detection of the TDCs disrupting thyroid hormone (TH) signaling. Here, we attempted to expand the application of the TiXMA to the screening of the TDCs interfering with the hypothalamic-pituitary-thyroid (HPT) axis. Two well-known TH synthesis inhibitors methimazole (MMI) and sodium perchlorate (SP) were employed to test the sensitivity of the TiXMA to the TDCs interfering with the HPT axis. As expected, we observed that the two chemicals concentration-dependently antagonized T3-induced morphological changes and body weight reduction of X. laevis tadpoles following 96 h-exposure, in parallel with blocked thyroid development and down-regulated tshß expression in the brain. All the data show that both MMI and SP exert inhibitory effects on T3-induced metamorphosis, indicating that the TiXMA is capable of screening the TDCs interfering with the HPT axis. In comparison with Amphibian Metamorphosis Assay (AMA), a 21-day assay for screening the TDCs interfering with the HPT axis, the TiXMA has a remarkable advantage of shorter exposure duration (96 h).


Subject(s)
Methimazole , Water Pollutants, Chemical , Animals , Humans , Xenopus laevis , Methimazole/toxicity , Methimazole/metabolism , Water Pollutants, Chemical/toxicity , Thyroid Gland , Metamorphosis, Biological , Larva
9.
J Nanobiotechnology ; 20(1): 510, 2022 Dec 03.
Article in English | MEDLINE | ID: mdl-36463225

ABSTRACT

Nanotopographical cues of bone implant surface has direct influences on various cell types during the establishment of osseointegration, a prerequisite of implant bear-loading. Given the important roles of monocyte/macrophage lineage cells in bone regeneration and remodeling, the regulation of nanotopographies on macrophages and osteoclasts has arisen considerable attentions recently. However, compared to osteoblastic cells, how nanotopographies regulate macrophages and osteoclasts has not been properly summarized. In this review, the roles and interactions of macrophages, osteoclasts and osteoblasts at different stages of bone healing is firstly presented. Then, the diversity and preparation methods of nanotopographies are summarized. Special attentions are paid to the regulation characterizations of nanotopographies on macrophages polarization and osteoclast differentiation, as well as the focal adhesion-cytoskeleton mediated mechanism. Finally, an outlook is indicated of coordinating nanotopographies, macrophages and osteoclasts to achieve better osseointegration. These comprehensive discussions may not only help to guide the optimization of bone implant surface nanostructures, but also provide an enlightenment to the osteoimmune response to external implant.


Subject(s)
Osseointegration , Osteoclasts , Cues , Macrophages , Leukocyte Count
10.
ACS Appl Mater Interfaces ; 14(45): 50520-50533, 2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36330544

ABSTRACT

Driving macrophages M2 polarization has attracted growing attention for improving osteogenesis. Here, the in situ growth of tunable gold nanoparticles (AuNPs) on titania nanotubes (TiNTs) array was realized by electrodeposition, with the guidance of TiNTs. The fabricated Au layer showed excellent biocompatibility with different osteoimmune effects. Briefly, the Au deposition on 5 and 10 V anodized TiNTs surface could induce RAW264.7 cells to M2 polarization, whereas the Au deposition on 20 V anodized TiNTs surface showed M1 polarization, as indicated by various markers determination through immunofluorescence staining, qPCR, Western blot, and ELISA. Furthermore, the osteogenic differentiation of MC3T3-E1 was significantly enhanced by the macrophages conditioned medium from the Au@10VNTs surface. The in vivo tests also confirmed denser and thicker new trabecula bone formation and more M2 macrophages infiltration both on and adjacent to the Au@10VNTs implant surface. In mechanism, the cytokine array analysis of macrophages conditioned medium from the Au@10VNTs surface revealed the upregulation of pro-healing cytokines such as IL-10 and VEGF and downregulation of pro-inflammatory cytokines such as IL-1ß and MCSF. In addition, the NF-κB pathway was significantly inhibited. In conclusion, the electrodeposition of a Au layer guided by TiNTs is a promising strategy for reducing postoperative inflammatory reactions and improving osseointegration through modulating macrophages polarization.


Subject(s)
Metal Nanoparticles , Nanotubes , Osteogenesis , Gold/pharmacology , Culture Media, Conditioned/pharmacology , Electroplating , Titanium/pharmacology , Titanium/metabolism , Macrophages/metabolism , Cytokines/metabolism
11.
J Hazard Mater ; 438: 129503, 2022 09 15.
Article in English | MEDLINE | ID: mdl-35999735

ABSTRACT

Ozonation is often applied to eliminate the recalcitrant contaminants in water. During the process, toxic transformation products (TPs) can be generated mainly via the reactions with ozone and hydroxyl radicals (•OH). However, the toxicity difference between the TPs generated from O3 and •OH has not been well elucidated. In this study, we designed ozonation scenarios with different Rct values (the exposure ratio of •OH to O3) via varying pH values, adding a catalyst or a radical scavenger, and investigated the degradation of a popularly used antibiotic ofloxacin (OFX). The microbial oxygen uptake, the development of zebrafish embryos, and the calculation with the Toxicity Estimation Software Tool (T.E.S.T) were applied to evaluate the toxicity of TPs generated from the above reaction scenarios. The toxicity tests demonstrated that TPs formed at high-Rct conditions were less toxic than those at low-Rct conditions. Ten and eleven TPs were identified during ozonation of OFX at pH 3 and 9, respectively, based on which the different pathways were proposed. The piperazine ring's demethylation and opening occurred at both pH values, while the hydroxylation of quinolone and oxazine mainly occurred at pH 9. The study suggests that •OH might be more efficient in eliminating the toxicity of OFX than O3.


Subject(s)
Ozone , Water Pollutants, Chemical , Water Purification , Animals , Hydroxyl Radical , Ofloxacin/toxicity , Oxidation-Reduction , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity , Zebrafish
12.
Article in English | MEDLINE | ID: mdl-35805640

ABSTRACT

The biological treatment efficiency of dye wastewater using activated sludge (AS) is largely limited to the chromaticity and ecotoxicity of dyestuff. To alleviate this limitation, eleven industrial-grade disperse dyes were obtained from a fiber-dyeing factory, and for the first time, we studied the decolorization and detoxification effects of using the Pycnoporus laccase enzyme. Efficient decolorization was achieved with the following conditions: dye concentration 50 mg/L, 1-hydroxybenzotriazole (HBT) 0.15 mM, temperature 65 °C, pH 4, and laccase 0.33 U/mL. The decolorization rate of disperse dyes, ranging from 51 to 96% in this investigation, was highly dependent on the dye type, concentration, laccase loading, and HBT. The ecotoxicity of dyes was evaluated by studying the germination/growth of wheat seed as well as the respiratory rate of aerobic AS. Laccase treatment mitigated the phytotoxicity of dyes because of the higher wheat germination (e.g., increase of 38% for Black ECT 200%) and growth rate (e.g., increase of 91% for Blue 2BLN 200%). The reduced ecotoxicity of decolorized dye solution towards microorganisms was also confirmed by the finding that the oxygen uptake by aerobic AS was increased relative to that of the untreated samples (e.g., increase of 14 folds for Blue HGL 200%). In addition, the chemical oxygen demand (COD) of decolorized dye solution was slightly lower than that without decolorization during the respiratory test. The experimental results suggest that enzymatic decolorization and detoxification can be potentially used as a pretreatment method for disperse dye wastewater followed by AS treatment.


Subject(s)
Pycnoporus , Water Purification , Biodegradation, Environmental , Coloring Agents/chemistry , Coloring Agents/toxicity , Laccase/chemistry , Wastewater/chemistry , Water Purification/methods
13.
Aquat Toxicol ; 249: 106241, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35868139

ABSTRACT

Nebivolol (NEB), a ß-blocker frequently used to treat cardiovascular diseases, has been widely detected in aquatic environments, and can be degraded under exposure to UV radiation, leading to the formation of certain transformation products (UV-TPs). Thus, the toxic effects of NEB and its UV-TPs on aquatic organisms are of great importance for aquatic ecosystems. In the present study, the degradation pathway of NEB under UV radiation was investigated. Subsequently, zebrafish embryos/larvae were used to assess the median lethal concentration (LC50) of NEB, and to clarify the sub-lethal effects of NEB and its UV-TPs for the first time. It was found that UV radiation could reduce the toxic effects of NEB on the early development of zebrafish. Transcriptomic analysis identified the top 20 enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways in zebrafish larvae exposed to NEB, most of which were associated with the antioxidant, nervous, and immune systems. The number of differentially expressed genes (DEGs) in the pathways were reduced after UV radiation. Furthermore, the analysis of protein biomarkers, including CAT and GST (antioxidant response), AChE and ACh (neurotoxicity), CRP and LYS (immune response), revealed that NEB exposure reduced the activity of these biomarkers, whereas UV radiation could alleviate the effects. The present study provides initial insights into the mechanisms underlying toxic effects of NEB and the detoxification effects of UV radiation on the early development of zebrafish. It highlights the necessity of considering the toxicity of UV-TPs when evaluating the toxicity of emerging pollutants in aquatic systems.


Subject(s)
Water Pollutants, Chemical , Zebrafish , Animals , Antioxidants/metabolism , Biomarkers/metabolism , Ecosystem , Embryo, Nonmammalian , Larva , Nebivolol/metabolism , Nebivolol/pharmacology , Transcriptome , Ultraviolet Rays , Water Pollutants, Chemical/toxicity , Zebrafish/metabolism
14.
Water Sci Technol ; 85(12): 3357-3369, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35771051

ABSTRACT

The cathode is the key component in the electro-peroxone process (E-Peroxone), which is popularly constructed with carbon materials. This study developed an innovative method to fabricate a cathode with waste-tire carbon (WTC) whose performance was evaluated for the degradation of tinidazole (TNZ), an antibiotic frequently detected in water. It was found that the addition of WTC in the cathode can significantly promote the yield of H2O2 and the current efficiency: around 2.7 times that of commercial carbon black at the same loading. The critical influencing factors were studied, including the current density, ozone concentration, initial pH value, chlorine ions and initial TNZ concentration. The scavenger tests demonstrated the possible involvement of •OH and O2•-. Some transformation products of TNZ were identified with UPLC-MS and the degradation pathway was proposed accordingly. These results demonstrated the potential of WTC for developing E-Peroxone cathodes.


Subject(s)
Ozone , Water Pollutants, Chemical , Carbon , Chromatography, Liquid , Electrodes , Hydrogen Peroxide , Oxidation-Reduction , Tandem Mass Spectrometry , Tinidazole , Water Pollutants, Chemical/analysis
15.
Biomater Adv ; 133: 112644, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35525743

ABSTRACT

The titanium implant surface topography optimization for improving osseointegration has been performed for many years, whereas understanding the mechanisms of topography-induced osteogenic differentiation is still insufficient. In this study, the micro/nano-textured topography was created on titanium implant surface by acid etching and anodization. The MC3T3-E1 cells were incubated with different surfaces and the RNA sequencing technique was performed to obtain the transcriptomic information, which suggested the enrichment at "membrane" and "organelle" (GO) as well as "Calcium signal pathway" (KEGG). Consequently, a special attention was paid to the store-operated calcium entry (SOCE) mediated by Orai1 at ER-PM contact site. By fluorescence staining and western blot, it was confirmed that the Orai1 was upregulated on the micro/nano-textured titanium surface, which was correlated to the enhanced osteogenic differentiation induced by topography. Further experiments indicated that the CaMKII/ERK1/2 pathway was involved in. This research is the first time giving a comprehensive transcriptomic information of osteoblasts on micro/nano-textured topography and may provide deeper insight into the interaction between biomaterials and host.


Subject(s)
Osteogenesis , Titanium , Biocompatible Materials , Cell Differentiation/genetics , Osteoblasts , Osteogenesis/genetics , Titanium/pharmacology
16.
Bioact Mater ; 8: 109-123, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34541390

ABSTRACT

Macrophages and osteoclasts are both derived from monocyte/macrophage lineage, which plays as the osteoclastic part of bone metabolism. Although they are regulated by bone implant surface nanoarchitecture and involved in osseointegration, the beneath mechanism has not been simultaneously analyzed in a given surface model and their communication with osteoblasts is also blurring. Here, the effect of implant surface topography on monocyte/macrophage lineage osteoclastogenesis and the subsequent effect on osteogenesis are systematically investigated. The nanoporous surface is fabricated on titanium implant by etching and anodizing to get the nanotubes structure. The early bone formation around implant is significantly accelerated by the nanoporous surface in vivo. Meanwhile, the macrophage recruitment and osteoclast formation are increased and decreased respectively. Mechanistically, the integrin mediated FAK phosphorylation and its downstream MAPK pathway (p-p38) are significantly downregulated by the nanoporous surface, which account for the inhibition of osteoclastogenesis. In addition, the nanoporous surface can alleviate the inhibition of osteoclasts on osteogenesis by changing the secretion of clastokines, and accelerate bone regeneration by macrophage cytokine profiles. In conclusion, these data indicate that physical topography of implant surface is a critical factor modulating monocyte/macrophage lineage commitment, which provides theoretical guidance and mechanism basis for promoting osseointegration by coupling the osteogenesis and osteoclastogenesis.

17.
Environ Sci Pollut Res Int ; 29(13): 19273-19282, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34714475

ABSTRACT

Despite extensive investigation on the toxicity of microplastics (MPs), an emerging global concern, little is known about the combined toxicity of MPs and co-occurring pollutants in aquatic environments. In this study, the combined toxicity of polystyrene MPs and sulfamethoxazole (SMZ) antibiotics was explored in zebrafish embryos in terms of the developmental, physiological, and endocrine toxicities. Exposure to PS and SMZ induced mortality (rate: 25.0 ± 7.5%) and malformation (rate: 20~35%) at multiple regions and stages of zebrafish development. Physiological toxicity was also induced as shown by the significant decrease in fetal movement (by 31.1~37.0%) and swimming frequency (by 26.9~36.8%) and the increase in heartbeat rate (by 19.0~20.9%). Finally, PS and SMZ exposure also induced extensive endocrine toxicities in zebrafish as confirmed by increases in various biomarkers including vitellogenin, 17ß-estradiol, testosterone, and triiodothyronine. The combination index showed that antagonistic effects were present between PS and SMZ toxicity, which slightly decreased their combined toxicity. This study aims to further understand the combined toxicity of MPs and co-occurring pollutants in aquatic environments.


Subject(s)
Microplastics , Water Pollutants, Chemical , Animals , Microplastics/toxicity , Plastics/toxicity , Polystyrenes/toxicity , Sulfamethoxazole/toxicity , Water Pollutants, Chemical/toxicity , Zebrafish
18.
Nucleic Acids Res ; 49(22): 12634-12643, 2021 12 16.
Article in English | MEDLINE | ID: mdl-34850916

ABSTRACT

G-quadruplex is an essential element in gene transcription that serves as a promising drug target. Guanine-vacancy-bearing G-quadruplex (GVBQ) is a newly identified G-quadruplex that has distinct structural features from the canonical G-quadruplex. Potential GVBQ-forming motifs are widely distributed in gene promoter regions. However, whether GVBQ can form in genomic DNA and be an effective target for manipulating gene expression is unknown. Using photo-crosslinking, dimethyl sulfate footprinting, exonuclease digestion and in vitro transcription, we demonstrated the formation of a GVBQ in the G-rich nuclease hypersensitivity element within the human PDGFR-ß gene promoter region in both single-stranded and double-stranded DNA. The formation of GVBQ in dsDNA could be induced by negative supercoiling created by downstream transcription. We also found that the PDGFR-ß GVBQ was specifically recognized and stabilized by a new synthetic porphyrin guanine conjugate (mPG). Targeting the PDGFR-ß GVBQ in human cancer cells using the mPG could specifically alter PDGFR-ß gene expression. Our work illustrates that targeting GVBQ with mPG in human cells can regulate the expression level of a specific gene, thus indicating a novel strategy for drug development.


Subject(s)
G-Quadruplexes , Gene Expression Regulation , Promoter Regions, Genetic , Receptor, Platelet-Derived Growth Factor beta/genetics , Base Sequence , DNA/chemistry , DNA, Single-Stranded/chemistry , Humans , Porphyrins/chemistry
19.
Int J Pharm ; 606: 120938, 2021 Sep 05.
Article in English | MEDLINE | ID: mdl-34310955

ABSTRACT

The injectable hydrogel is an ideal reservoir for drug delivery. In this study, a new injectable DNA hydrogel was fabricated. Firstly, the DNA pre-gel was obtained by heat-cool treatments to induce cross-linkage through base-paring. Then, the pre-gel was cross-linked with chitosan (CS) through electrostatic interaction, which was confirmed by ATR-FTIR and XPS analysis. The DNA-CS hybrid gel showed finely tunable various properties such as porosity and viscosity. To simulate the biomedical application, the dexamethasone (Dex) was loaded into the gel and coated onto titanium implant surface to induce macrophages M2 polarization. Due to the excellent biocompatibility and Dex delivery, the decorated implant surface was favorable for RAW264.7 cells growth and showed powerful effects of inducing M2 polarization both in vitro and in vivo. In conclusion, it is the first report of DNA hydrogel synthesis via CS cross-linkage and the injectable DNA-CS hybrid gel was superb for therapeutic delivery.


Subject(s)
Chitosan , DNA , Drug Delivery Systems , Hydrogels , Static Electricity
20.
Environ Pollut ; 287: 117649, 2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34182397

ABSTRACT

Gabapentin-lactam (GBP-L) is a transformation product (TP) of gabapentin (GBP), a widely used anti-epileptic pharmaceutical. Due to its high persistence, GBP-L has been frequently detected in the surface water. However, the effects of GBP-L on aquatic organisms have not been thoroughly investigated. In the present study, zebrafish (Danio rerio) embryos as a model organism were used to study the impacts of GBP-L in terms of embryos LC50, spontaneous movement at 24 hpf (hours post fertilization), heartbeat rates at 48 hpf, and body length at 72 hpf, with the concentrations of GBP-L down to 0.01 µg/L, covering its environmental concentrations. Various biomarkers from nervous, antioxidant and immune systems of zebrafish larvae were analyzed, including acetylcholinesterase, acetylcholine, dopamine, gamma-aminobutyric acid, superoxide dismutase, catalase, glutathione S-transferase, C reactive protein, and lysozyme, to assess its toxicity on these systems. RT-qPCR was then used to further verify the results and explain the toxicological mechanism at the gene level. The results demonstrated that GBP-L is much more toxic than its parent compound, and could lead to adverse impacts on the aquatic organisms even at every low concentrations.


Subject(s)
Water Pollutants, Chemical , Zebrafish , Animals , Aza Compounds , Embryo, Nonmammalian/metabolism , Larva , Oxidative Stress , Spiro Compounds , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...