Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters











Publication year range
1.
Biochem Biophys Res Commun ; 726: 150213, 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-38964186

ABSTRACT

The F11 receptor (F11R) gene encoding junctional adhesion molecule A has been associated with gastric cancer (GC) and colorectal cancer (CRC), in which its role and regulation remain to be further elucidated. Recently F11R was also identified as a potential target of adenosine-to-inosine (A-to-I) mediated by the adenosine deaminases acting on RNA (ADARs). Herein, using RNA-Seq and experimental validation, our current study revealed an F11R RNA trinucleotide over-edited by ADAR, with its regulation of gene expression and clinical significance in four GC and three CRC cohorts. Our results found an over-edited AAA trinucleotide in an AluSg located in the F11R 3'-untranslated region (3'-UTR), which showed editing levels correlated with elevated ADAR expression across all GC and CRC cohorts in our study. Overexpression and knockdown of ADAR in GC and CRC cells, followed by RNA-Seq and Sanger sequencing, confirmed the ADAR-mediated F11R 3'-UTR trinucleotide editing, which potentially disrupted an RBM45 binding site identified by crosslinking immunoprecipitation sequencing (CLIP-seq) and regulated F11R expression in luciferase reporter assays. Moreover, the F11R trinucleotide editing showed promising predictive performance for diagnosing GC and CRC across GC and CRC cohorts. Our findings thus highlight both the potential biological and clinical significance of an ADAR-edited F11R trinucleotide in GC and CRC, providing new insights into its application as a novel diagnostic biomarker for both cancers.


Subject(s)
Adenosine Deaminase , Colorectal Neoplasms , Gene Expression Regulation, Neoplastic , RNA Editing , RNA-Binding Proteins , Stomach Neoplasms , Humans , Adenosine Deaminase/genetics , Adenosine Deaminase/metabolism , Colorectal Neoplasms/genetics , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/metabolism , Stomach Neoplasms/genetics , Stomach Neoplasms/diagnosis , Stomach Neoplasms/metabolism , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Cohort Studies , 3' Untranslated Regions/genetics , Cell Line, Tumor , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Male , Female
2.
Cell Rep ; 43(3): 113878, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38431844

ABSTRACT

Cytidine deaminase defines the properties of cytosine base editors (CBEs) for C-to-T conversion. Replacing the cytidine deaminase rat APOBEC1 (rA1) in CBEs with a human APOBEC3A (hA3A) improves CBE properties. However, the potential CBE application of macaque A3A orthologs remains undetermined. Our current study develops and evaluates engineered CBEs based on Macaca fascicularis A3A (mA3A). Here, we demonstrate that BE4-mA3A and its RNA-editing-derived variants exhibit improved CBE properties, except for DNA off-target activity, compared to BE3-rA1 and BE4-rA1. Unexpectedly, deleting Ser-Val-Arg (SVR) in BE4-mA3A dramatically reduces DNA and RNA off-target activities and improves editing accuracy, with on-target efficiency unaffected. In contrast, a chimeric BE4-hA3A-SVR+ shows editing efficiency increased by about 50%, with other properties unaffected. Our findings demonstrate that mA3A-based CBEs could provide prototype options with advantages over rA1- and hA3A-based CBEs for further optimization, highlighting the importance of the SVR motif in defining CBE intrinsic properties.


Subject(s)
Cytosine , Gene Editing , Proteins , Rats , Animals , Humans , Macaca fascicularis , Cytidine Deaminase/genetics , RNA/genetics , DNA/genetics , CRISPR-Cas Systems
3.
Biochem Biophys Res Commun ; 695: 149373, 2024 02 05.
Article in English | MEDLINE | ID: mdl-38176170

ABSTRACT

Recent studies have revealed that tumor immunotherapy resistance is influenced by ADAR-mediated RNA editing, but its targets remain unelucidated. Our current study identified the poliovirus receptor (PVR) oncogene, which encodes an immune checkpoint in colorectal cancer (CRC), as a potential target for RNA editing. We performed transcriptome sequencing analysis and experimental validation in two Chinese CRC cohorts. PVR and ADAR expressions significantly increased in CRC tumors and showed positive correlations in both cohorts, coupled with upregulated PVR RNA editing in CRC tumors. Manipulation of ADAR expression by over-expression or knockdown substantially changed PVR expression and RNA editing in HTC116 CRC cells. Luciferase reporter and actinomycin D assays further revealed that RNA editing in PVR 3'-UTR could upregulate PVR RNA expression, probably by increasing the RNA stability. By increasing PVR expression, ADAR-mediate RNA editing might contribute to tumor- and immune-related gene functions and pathways in CRC. Moreover, a signature combining PVR RNA editing and expression showed promising predictive performance in CRC diagnosis in both Chinese CRC cohorts. Our findings thus highlight the importance of ADAR-mediated RNA editing in PVR up-regulation in CRC tumors and provide new insight into the application of PVR RNA editing as a novel diagnostic biomarker for CRC.


Subject(s)
Colorectal Neoplasms , RNA-Binding Proteins , Receptors, Virus , Humans , Adenosine Deaminase/genetics , Adenosine Deaminase/metabolism , Colorectal Neoplasms/genetics , Gene Expression Profiling , RNA Editing/genetics , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Immune Checkpoint Proteins/genetics , Immune Checkpoint Proteins/metabolism
4.
Front Neurosci ; 17: 1220114, 2023.
Article in English | MEDLINE | ID: mdl-37449273

ABSTRACT

Myopia is one of the most common causes of vision loss globally and is significantly affected by epigenetics. Adenosine-to-inosine (A-to-I RNA) editing is an epigenetic process involved in neurological disorders, yet its role in myopia remains undetermined. We performed a transcriptome-wide analysis of A-to-I RNA editing in the retina of form-deprivation myopia mice. Our study identified 91 A-to-I RNA editing sites in 84 genes associated with myopia. Notably, at least 27 (32.1%) of these genes with myopia-associated RNA editing showed existing evidence to be associated with myopia or related ocular phenotypes in humans or animal models, such as very low-density lipoprotein receptor (Vldlr) in retinal neovascularization and hypoxia-induced factor 1 alpha (Hif1a). Moreover, functional enrichment showed that RNA editing enriched in FDM was primarily involved in response to fungicides, a potentially druggable process for myopia prevention, and epigenetic regulation. In contrast, RNA editing enriched in controls was mostly involved in post-embryonic eye morphogenesis. Our results demonstrate altered A-to-I RNA editing associated with myopia in an experimental mouse model and warrant further study on its role in myopia development.

5.
Pediatr Pulmonol ; 58(7): 2017-2024, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37098833

ABSTRACT

BACKGROUND: With the increase in macrolide-resistant M. pneumoniae infections, off-label use is difficult to avoid. This study assessed the safety of moxifloxacin in pediatric patients with severe refractory M. pneumoniae pneumonia (SRMPP). METHODS: We retrospectively reviewed the medical records of children with SRMPP between January 2017 and November 2020 at Beijing Children's Hospital. They were divided into the moxifloxacin group and azithromycin group according to whether or not moxifloxacin was used. The clinical symptoms, radiographs of both knees, and cardiac ultrasounds of the children were collected after drug withdrawal for at least 1 year. A multidisciplinary team reviewed all adverse events and determined their relationship with moxifloxacin. RESULTS: A total of 52 children with SRMPP were included in this study (31 in the moxifloxacin group and 21 in the azithromycin group). In the moxifloxacin group, four patients had arthralgia, one had joint effusion, and seven had heart valve regurgitation. In the azithromycin group, three patients had arthralgia, one had claudication, and one had heart valve regurgitation; no obvious knee abnormalities were observed in the radiographs. No statistically significant differences in clinical symptoms or imaging findings were found between the groups. As for the adverse events, 11 patients in moxifloxacin group were deemed to be doubtfully related and one possibly related to moxifloxacin; in the azithromycin group, four patients were regarded to be doubtfully related to azithromycin and one not related. CONCLUSION: Moxifloxacin was well tolerated and safe for treating SRMPP in children.


Subject(s)
Azithromycin , Pneumonia, Mycoplasma , Child , Humans , Azithromycin/adverse effects , Moxifloxacin/therapeutic use , Mycoplasma pneumoniae , Retrospective Studies , Pneumonia, Mycoplasma/diagnostic imaging , Pneumonia, Mycoplasma/drug therapy , Anti-Bacterial Agents/adverse effects , Drug Resistance, Bacterial
6.
Front Psychiatry ; 13: 896794, 2022.
Article in English | MEDLINE | ID: mdl-35664469

ABSTRACT

Winner-loser effects influence subsequent agonistic interactions between conspecifics. Previous winning experiences could strengthen future aggression and increase the chance of winning the next agonistic interaction, while previous losing experiences could have the opposite effect. Although the role of A-to-I RNA editing has been recently implicated in chronic social defeat stress and aggressive behavior, it remains to be further elucidated in chronic social conflicts in agonistic interactions, especially in the repeated aggression (winners) and repeated defeat (losers) resulted from these conflicts. In the current study, transcriptome-wide A-to-I RNA editing in the dorsal striatum was investigated in a mouse model of chronic social conflicts, and compared between mice repeatedly winning and losing daily agonistic interactions. Our analysis identified 622 A-to-I RNA editing sites in the mouse dorsal striatum, with 23 to be differentially edited in 22 genes, most of which had been previously associated with neurological, psychiatric, or immune disorders. Among these differential RNA editing (DRE) sites four missense variants were observed in neuroligin 2 (Nlgn2), Cdc42 guanine nucleotide exchange factor 9 (Arhgef9) BLCAP apoptosis inducing factor (Blcap), and cytoplasmic FMR1 interacting protein 2 (Cyfip2), as well as two noncoding RNA sites in small nucleolar RNA host gene 11 (Snhg11) and the maternally expressed 3 (Meg3) gene. Moreover, significant changes were observed in gene functions and pathways enriched by genes with A-to-I RNA editing in losers and especially winners compared to controls. Our results demonstrate that repeated winning and losing experiences in chronic social conflicts are linked to A-to-I RNA editing pattern difference, underlining its role in the molecular mechanism of agonistic interactions between conspecifics.

7.
Front Genet ; 13: 887001, 2022.
Article in English | MEDLINE | ID: mdl-35559016

ABSTRACT

Recent studies suggest that RNA editing is associated with impaired brain function and neurological and psychiatric disorders. However, the role of A-to-I RNA editing during sepsis-associated encephalopathy (SAE) remains unclear. In this study, we analyzed adenosine-to-inosine (A-to-I) RNA editing in postmortem brain tissues from septic patients and controls. A total of 3024 high-confidence A-to-I RNA editing sites were identified. In sepsis, there were fewer A-to-I RNA editing genes and editing sites than in controls. Among all A-to-I RNA editing sites, 42 genes showed significantly differential RNA editing, with 23 downregulated and 19 upregulated in sepsis compared to controls. Notably, more than 50% of these genes were highly expressed in the brain and potentially related to neurological diseases. Notably, cis-regulatory analysis showed that the level of RNA editing in six differentially edited genes was significantly correlated with the gene expression, including HAUS augmin-like complex subunit 2 (HAUS2), protein phosphatase 3 catalytic subunit beta (PPP3CB), hook microtubule tethering protein 3 (HOOK3), CUB and Sushi multiple domains 1 (CSMD1), methyltransferase-like 7A (METTL7A), and kinesin light chain 2 (KLC2). Furthermore, enrichment analysis showed that fewer gene functions and KEGG pathways were enriched by edited genes in sepsis compared to controls. These results revealed alteration of A-to-I RNA editing in the human brain associated with sepsis, thus providing an important basis for understanding its role in neuropathology in SAE.

9.
Front Immunol ; 12: 715559, 2021.
Article in English | MEDLINE | ID: mdl-34539647

ABSTRACT

The involvement of gut microbiota in T-cell trafficking into tumor tissue of colorectal cancer (CRC) remains to be further elucidated. The current study aimed to evaluate the expression of major cytotoxic T-cell trafficking chemokines (CTTCs) and chemokine-associated microbiota profiles in both tumor and adjacent normal tissues during CRC progression. We analyzed the expression of chemokine C-X-C motif ligands 9, 10, and 11 (CXCL9, CXCL10, and CXCL11), and C-C motif ligand 5 (CCL5), characterized gut mucosa-associated microbiota (MAM), and investigated their correlations in CRC patients. Our results showed that the expression of CXCL9, CXCL10, and CXCL11 was significantly higher in tumor than in adjacent normal tissues in 136 CRC patients. Notably, the high expression of CXCL9 in tumor tissues was associated with enhanced CD8+ T-cell infiltration and improved survival. Moreover, the MAM in tumor tissues showed reduction of microbial diversity and increase of oral bacteria. Microbial network analysis identified differences in microbial composition and structure between tumor and adjacent normal tissues. In addition, stronger associations between oral bacteria and other gut microbes were observed. Furthermore, the correlation analysis between the defined MAM and individual CTTCs showed that the CTTCs' correlated operational taxonomic units (OTUs) in tumor and adjacent normal tissues rarely overlap with each other. Notably, all the enriched OTUs were positively correlated with the CTTCs in either tumor or adjacent normal tissues. Our findings demonstrated stronger interactions between oral bacteria and gut microbes, and a shifted correlation pattern between MAM and major CTTCs in tumor tissues, underlining possible mechanisms of gut microbiota-host interaction in CRC.


Subject(s)
Chemokines/metabolism , Chemotaxis, Leukocyte/immunology , Colorectal Neoplasms/etiology , Colorectal Neoplasms/metabolism , Gastrointestinal Microbiome/immunology , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Cytotoxic/metabolism , Adult , Aged , Biomarkers , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Colorectal Neoplasms/pathology , Computational Biology/methods , Disease Progression , Disease Susceptibility , Female , Fluorescent Antibody Technique , Humans , Immunohistochemistry , Male , Metagenome , Metagenomics , Middle Aged , Neoplasm Grading , Neoplasm Staging
10.
Chest ; 153(5): 1116-1124, 2018 05.
Article in English | MEDLINE | ID: mdl-29625777

ABSTRACT

BACKGROUND: In COPD, functional status is improved by pulmonary rehabilitation (PR) but requires specific facilities. Tai Chi, which combines psychological treatment and physical exercise and requires no special equipment, is widely practiced in China and is becoming increasingly popular in the rest of the world. We hypothesized that Tai Chi is equivalent (ie, difference less than ±4 St. George's Respiratory Questionnaire [SGRQ] points) to PR. METHODS: A total of 120 patients (mean FEV1, 1.11 ± 0.42 L; 43.6% predicted) bronchodilator-naive patients were studied. Two weeks after starting indacaterol 150 µg once daily, they randomly received either standard PR thrice weekly or group Tai Chi five times weekly, for 12 weeks. The primary end point was change in SGRQ prior to and following the exercise intervention; measurements were also made 12 weeks after the end of the intervention. RESULTS: The between-group difference for SGRQ at the end of the exercise interventions was -0.48 (95% CI PR vs Tai Chi, -3.6 to 2.6; P = .76), excluding a difference exceeding the minimal clinically important difference. Twelve weeks later, the between-group difference for SGRQ was 4.5 (95% CI, 1.9 to 7.0; P < .001), favoring Tai Chi. Similar trends were observed for 6-min walk distance; no change in FEV1 was observed. CONCLUSIONS: Tai Chi is equivalent to PR for improving SGRQ in COPD. Twelve weeks after exercise cessation, a clinically significant difference in SGRQ emerged favoring Tai Chi. Tai Chi is an appropriate substitute for PR. TRIAL REGISTRY: ClinicalTrials.gov; No.: NCT02665130; URL: www.clinicaltrials.gov.


Subject(s)
Exercise Therapy , Pulmonary Disease, Chronic Obstructive/rehabilitation , Tai Ji , Adult , Aged , Aged, 80 and over , Humans , Middle Aged , Muscle Strength , Respiratory Function Tests , Surveys and Questionnaires , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL