Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 8(1): 7390, 2018 05 09.
Article in English | MEDLINE | ID: mdl-29743524

ABSTRACT

Primary methods play an important role in metrology. They can be used for the value assignment of certified reference materials, enabling the accuracy and comparability of the measurement. A novel potential primary method for enantiomer quantitation based on high-performance liquid chromatography-circular dichroism is described using L-phenylalanine as an example. The optimal quantitation range of L-Phe was from 0.1 mg/g to 1.2 mg/g, where both the relative bias and method variance were lower than 1%. The LOD and LOQ were 4 µg/g and 30 µg/g, respectively. The proposed method was also applied to the determination of the mass fraction of pure porcine insulin in solid. The average mass fraction obtained was 0.922 g/g with a RSD of 1.5%, and the associated relative uncertainty is 3.8% (k = 2), which agreed well with that obtained from the traditional isotope dilution mass spectrometry method. The LOD and LOQ for insulin quantitation were found to be 0.12 mg/g and 0.44 mg/g, respectively. The proposed method can be entirely described and understood by equations and a complete uncertainty statement can be defined in SI units.Therefore, it may be a potential primary method useful for the quantification of chiral compounds and proteins, and a supplementary method to the traditional isotope dilution mass spectrometry approach.

2.
Talanta ; 178: 78-84, 2018 Feb 01.
Article in English | MEDLINE | ID: mdl-29136894

ABSTRACT

Active proteins play important roles in the function regulation of human bodies and attract much interest for use in pharmaceuticals and clinical diagnostics. However, the lack of primary methods to analyze active proteins means there is currently no metrology standard for active protein measurement. In recent years, calibration-free concentration analysis (CFCA), which is based on surface plasmon resonance (SPR) technology, has been proposed to determine the active concentration of proteins that have specific binding activity with a binding partner without any higher order standards. The CFCA experiment observes the changes of binding rates at totally different two flow rates and uses the known diffusion coefficient of an analyte to calculate the active concentration of proteins, theoretically required, the binding process have to be under diffusion-limited conditions. Measuring the active concentration of G2-EPSPS protein by CFCA was proposed in this study. This method involves optimization of the regeneration buffer and preparation of chip surfaces for appropriate reaction conditions by immobilizing ligands (G2-EPSPS antibodies) on sensor chips (CM5) via amine coupling. The active concentration of G2-EPSPS was then determined by injection of G2-EPSPS protein samples and running buffer over immobilized and reference chip surfaces at two different flow rates (5 and 100µLmin-1). The active concentration of G2-EPSPS was obtained after analyzing these sensorgrams with the 1:1 model. Using the determined active concentration of G2-EPSPS, the association, dissociation, and equilibrium constants of G2-EPSPS and its antibody were determined to be 2.18 ± 0.03 × 106M-1s-1, 5.79 ± 0.06 ×10-3s-1, and 2.65 ± 0.06 × 10-9M, respectively. The performance of the proposed method was evaluated. The within-day precisions were from 3.26% to 4.59%, and the between-day precision was 8.36%. The recovery rate of the method was from 97.46% to 104.34% in the concentration range of 1.5-8nM. The appropriate concentration range of G2-EPSPS in the proposed method was determined to be 1.5-8nM. The active G2-EPSPS protein concentration determined by our method was only 17.82% of that obtained by isotope dilution mass spectrometry, showing the active protein was only a small part of the total G2-EPSPS protein. The measurement principle of the proposed method can be clearly described by equations and the measurement result can be expressed in SI units. Therefore, the proposed method shows promise to become a primary method for active protein concentration measurement, which can benefit the development of certified reference materials for active proteins.


Subject(s)
3-Phosphoshikimate 1-Carboxyvinyltransferase/analysis , Surface Plasmon Resonance/methods , 3-Phosphoshikimate 1-Carboxyvinyltransferase/chemistry , Amines/chemistry , Enzymes, Immobilized/analysis , Enzymes, Immobilized/chemistry , Ligands , Limit of Detection , Molecular Weight
SELECTION OF CITATIONS
SEARCH DETAIL
...