Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Acta Biomater ; 181: 375-390, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38734284

ABSTRACT

Atherosclerosis (AS), a pathological cause of cardiovascular disease, results from endothelial injury, local progressive inflammation, and excessive lipid accumulation. AS plaques rich in foam cells are prone to rupture and form thrombus, which can cause life-threatening complications. Therefore, the assessment of atherosclerotic plaque vulnerability and early intervention are crucial in reducing the mortality rates associated with cardiovascular disease. In this work, A fluorescent probe FC-TPA was synthesized, which switches the fluorescence state between protonated and non-protonated, reducing background fluorescence and enhancing imaging signal-to-noise ratio. On this basis, FC-TPA is loaded into cyclodextrin (CD) modified with phosphatidylserine targeting peptide (PTP) and coated with hyaluronic acid (HA) to construct the intelligent responsive diagnostic nanoplatform (HA@PCFT). HA@PCFT effectively targets atherosclerotic plaques, utilizing dual targeting mechanisms. HA binds strongly to CD44, while PTP binds to phosphatidylserine, enabling nanoparticle aggregation at the lesion site. ROS acts as a smart release switch for probes. Both in vitro and in vivo evaluations confirm impressive lipid-specific fluorescence imaging capabilities of HA@PCFT nanoparticles (NPs). The detection of lipid load in atherosclerotic plaque by fluorescence imaging will aid in assessing the vulnerability of atherosclerotic plaque. STATEMENT OF SIGNIFICANCE: Currently, numerous fluorescent probes have been developed for lipid imaging. However, some challenges including inadequate water solubility, nonspecific distribution patterns, and fluorescence background interference, have greatly limited their further applications in vivo. To overcome these limitations, a fluorescent molecule has been designed and synthesized, thoroughly investigating its photophysical properties through both theoretical and experimental approaches. Interestingly, this fluorescent molecule exhibits the reversible fluorescence switching capabilities, mediated by hydrogen bonds, which effectively mitigate background fluorescence interference. Additionally, the fluorescent molecules has been successfully loaded into nanocarriers functionalized with the active targeting abilities, which has significantly improved the solubility of the fluorescent molecules and reduced their nonspecific distribution in vivo for an efficient target imaging in atherosclerosis. This study provides a valuable reference for evaluating the performance of such fluorescent dyes, and offers a promising perspective on the design of the target delivery systems for atherosclerosis.


Subject(s)
Fluorescent Dyes , Nanoparticles , Plaque, Atherosclerotic , Reactive Oxygen Species , Plaque, Atherosclerotic/diagnostic imaging , Animals , Nanoparticles/chemistry , Reactive Oxygen Species/metabolism , Fluorescent Dyes/chemistry , Mice , Optical Imaging/methods , Hyaluronic Acid/chemistry , Lipids/chemistry , Humans , RAW 264.7 Cells
2.
Biosens Bioelectron ; 251: 116099, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38330773

ABSTRACT

Abortive transcripts (ATs) refer to nascent 2-10 nucleotides (nt) RNAs released by RNA polymerases before synthesizing productive RNAs. The quantitative detection of ATs is important for studying transcription initiation and the biological function of ATs; however, no method is available for the qualitative and quantitative assessment of such ultra-short oligonucleotides (typically shorter than 11 nt) in vivo at present, even with the LNA probes, the detection limit can only reach 11 nt. Here, we demonstrated the base stacking hybridization assisted ligation (BSHAL) technique, combined with TaqMan-MGB qPCR, can detect 4-10 nt ATs with a specificity of nucleotide resolution and a sensitivity of approximately 10 pM. By this technique, we detected endogenous ATs in cell lines, mice plasmas, and mice liver tissues, respectively, and proved that naturally occurring ATs do exist. We found that the 8 nt ATs of HMSB and Gapdh could be used as reference ATs for data normalization in Homo and mouse respectively, and 8 nt ATs of Afp and Gpc3 were suitable for use as plasma biomarkers of Hepatocellular carcinoma in mouse, indicate ATs are promising biomarkers. This study offers opportunities to study ATs and other ultra-short oligonucleotides in biological samples.


Subject(s)
Biosensing Techniques , Liver Neoplasms , Mice , Animals , Liver Neoplasms/diagnosis , Liver Neoplasms/genetics , Polymerase Chain Reaction , Oligonucleotides , Biomarkers
3.
J Ethnopharmacol ; 324: 117809, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38266946

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Sea buckthorn (Hippophae rhamnoides L.) is an edible fruit with a long history in China as a medicinal plant. The fruits of H. rhamnoides are rich in a variety of nutrients and pharmacological active compounds. As one of the most important active ingredients in sea buckthorn, polysaccharides have attracted the attention of researchers due to their antioxidant, anti-fatigue, and liver protective qualities. AIM OF THE REVIEW: This review summarizes recent studies on extraction, purification, structural characterization and pharmacological activities of polysaccharides from sea buckthorn. In addition, the relationship between the structure and the activities of sea buckthorn polysaccharides (SBPS) were discussed. This review would provide important research bases and up-to-date information for the future in-depth development and application of sea buckthorn polysaccharides in the field of pharmaceuticals and functional foods. MATERIALS AND METHODS: By inputting the search term "Sea buckthorn polysaccharides", relevant research information was obtained from databases such as Web of Science, Google Scholar, PubMed, China Knowledge Network (CNKI), China Master Theses Full-text Database, and China Doctoral Dissertations Full-text Database. RESULTS: The main extraction methods of SBPS include hot water extraction (HWE), ultrasonic assisted extraction (UAE), microwave-assisted extraction (MAE), flash extraction (FE), and ethanol extraction. More than 20 polysaccharides have been isolated from sea buckthorn fruits. The chemical structures of sea buckthorn polysaccharides obtained by different extraction, isolation, and purification methods are diverse. Polysaccharides from sea buckthorn display a variety of pharmacological properties, including antioxidant, anti-fatigue, liver protection, anti-obesity, regulation of intestinal flora, immunoregulation, anti-tumor, anti-inflammatory, and hypoglycemic activities. CONCLUSIONS: Sea buckthorn has a long medicinal history and characteristics of an ethnic medicine and food. Polysaccharides are one of the main active components of sea buckthorn, and they have received increasing attention from researchers. Sea buckthorn polysaccharides have remarkable pharmacological activities, health benefits, and broad application prospects. In addition, further exploration of the chemical structure of SBPS, in-depth study of their pharmacological activities, identification of their material basis, characterization of disease resistance mechanisms, and potential health functions are still directions of future research. With the accumulation of research on the extraction and purification processes, chemical structure, pharmacological effects, molecular mechanisms, and structure-activity relationships, sea buckthorn polysaccharides derived from natural resources will ultimately make significant contributions to human health.


Subject(s)
Hippophae , Humans , Hippophae/chemistry , Antioxidants/pharmacology , Antioxidants/therapeutic use , Antioxidants/analysis , Fruit/chemistry , Polysaccharides/pharmacology , Polysaccharides/therapeutic use , Polysaccharides/analysis , Plant Extracts/pharmacology
4.
ACS Appl Mater Interfaces ; 15(40): 47381-47393, 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37769171

ABSTRACT

The formation of atherosclerosis is the root cause of various cardiovascular diseases (CVDs). Therefore, effective CVD interventions call for precise identification of the plaques to aid in clinical treatment of such diseases. Herein, a reactive oxygen species (ROS)-responsive sequentially targeted fluorescent probe is developed for atherosclerotic plaque recognition. An aggregation-induced emission active fluorophore is linked to maleimide (polyethylene glycol) hydroxyl with a ROS-responsive cleavable bond, which is further functionalized with CLIKKPF peptide (TPAMCF) for specifically binding to phosphatidylserine of the foam cells. After being assembled in aqueous medium, TPAMCF nanoparticles can efficiently accumulate in the plaques through the high affinity of CLIKKPF to the externalized phosphatidylserine of the foam cells. Activated by the locally accumulated ROS in foam cells, the nanoparticles are interrupted, and then TPA can be released and subsequently identify the lipid droplets inside the foam cells to achieve fluorescence imaging of the plaques. Such nanoprobes have the favorable ROS response performance and exhibit a special target binding to the foam cells in vitro. In addition, nanoprobe-based fluorescence imaging permitted the high-contrast and precise detection of atherosclerosis specimens ex vivo. Therefore, as a promising fluorescent probe, TPAMCF is capable of being a potential candidate for the detection of atherosclerotic plaque.

5.
Front Plant Sci ; 13: 1039507, 2022.
Article in English | MEDLINE | ID: mdl-36340387

ABSTRACT

Pinellia ternata (Thunb.) is a famous traditional Chinese medicine with high medicinal value, but its culture is strongly hindered by the continuous cropping obstacles (CCO) which are tightly associated with allelopathic effects. Deciphering the response mechanisms of P. ternata to allelochemicals is critical for overcoming the CCO. Here, we elucidate the response of P. ternata to phenolic acids treatment via physiological indices, cellular approaches, and transcriptome analysis. Phenolic acids showed a significant effect on the growth of P. ternata seedlings, similar to the phenotype of continuous cropping. Cellular analysis demonstrated that phenolic acids remarkably induced root cell death. Physiological analysis revealed that phenolic acids induced the overaccumulated of H2O2 and O 2 - in root cells. However, two exogenous antioxidants (L-ascorbic acid and ß-gentiobiose) aid in the scavenging of over-accumulated H2O2 and O 2 - by promoting the antioxidant enzyme activity such as superoxide dismutase (SOD), ascorbate peroxidase (APX), and catalase (CAT). Transcriptome analysis demonstrated that differentially expressed genes (DEGs) related to the cell wall degeneration and reactive oxygen species (ROS) metabolism were upregulated by phenolic acid treatment. In addition, downregulated DEGs involved in sucrose and starch metabolism and phenylpropanoid biosynthesis pathways decreased the key metabolites contents. Taken together, phenolic acids caused root cell death by inducing the overaccumulation of H2O2 and O 2 - , and L-ascorbic acid and ß-gentiobiose effectively alleviated ROS stress. The present study elucidates the underlying mechanism of the allelopathic effect of phenolic acids, offers valuable information for further understanding the mechanism of CCO, and could contribute to improving guidance for further P. ternata production.

6.
Front Nutr ; 9: 961998, 2022.
Article in English | MEDLINE | ID: mdl-35990336

ABSTRACT

This study aimed to assess how several sweeteners (white sugar, Siraitia grosvenorii fruit, mogrosides, and stevia glycoside) affected the flavor, fatty acid composition, and quality of braised pork. The findings indicated that braised meat prepared with sweeteners differed from typical braised pork. When simmered for 60 min, the typical braised pork with white granulated sugar exhibited a significant cooking loss (CL) and little water content. Significantly more than in the group containing Siraitia grosvenorii, mogroside, and stevia glycoside, the Thiobarbituric acid (TBARS) value increased by 14.39% (P < 0.05). The sample in the group that included mogroside had a low CL rate. After 40 min of stewing, the lean pork has the highest L* value, but the 60-min stew sample is nicely colored and stretchy. Mogroside can prevent protein, and lipid oxidation, is thermally stable and reduces CL during stewing. Additionally, Siraitia grosvenorii and stevia glycosides help prevent oxidation from intensifying during stewing. When Siraitia grosvenorii is added, lipid oxidation is significantly inhibited, and stevia glycosides are more beneficial for enhancing meat color. With an increase in heating time, the fatty acids in braised pork reduced; the unsaturated fatty acid (UFA) of the Siraitia grosvenorii fruit (SF) and mg group also fell somewhat, and the UFA: SFA ratio was higher than that of the white sugar (WS) group. The SFA content of the braised meat in the stevia glycoside group was higher than that of the WS group. In all, 75 volatile flavor elements in braised pork were discovered by Gas chromatography-ion mobility spectrometry (GC-IMS). The sweetener increased alcohols, esters, and acids in the braised pork. As stewing time increased, ketones decreased, but aldehydes and esters increased. The pork formed antioxidant peptides with great nutritional value after cooking. Braised pork with mogroside and stevia glycoside additions primarily have some protein color protection and antioxidant effects. This study may offer fresh perspectives on applying natural sweeteners and enhancing braised pork's flavor.

7.
Sci Rep ; 12(1): 2856, 2022 02 21.
Article in English | MEDLINE | ID: mdl-35190606

ABSTRACT

The SQUAMOSA promoter-binding protein-like (SPL) family play a key role in guiding the switch of plant growth from juvenile to adult phases. Populus euphratica Oliv. exhibit typical heterophylly, and is therefore an ideal model for studying leaf shape development. To investigate the role and regulated networks of SPLs in the morphogenesis of P. euphratica heteromorphic leaves. In this study, 33 P. euphratica SPL (PeuSPL) genes were identified from P. euphratica genome and transcriptome data. Phylogenetic analysis depicted the classification of these SPL genes into two subgroups. The expression profiles and regulatory networks of P. euphratica SPL genes analysis displayed that major P. euphratica SPL family members gradually increases from linear to broad-ovate leaves, and they were involved in the morphogenesis regulation, stress response, transition from vegetative to reproductive growth, photoperiod, and photosynthesis etc. 14 circRNAs, and 33 lncRNAs can promote the expression of 12 of the P. euphratica SPLs by co-decoying miR156 in heteromorphic leaf morphogenesis. However, it was found that the effect of PeuSPL2-4 and PeuSPL9 in leaf shape development was contrasting to their homologous genes of Arabidopsis. Therefore, it was suggested that the SPL family were evolutionarily conserved for regulation growth, but were varies in different plant for regulation of the organ development.


Subject(s)
Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Genes, Plant/genetics , Morphogenesis/genetics , Plant Leaves/genetics , Populus/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Photosynthesis/genetics , Phylogeny , Plant Leaves/growth & development , Plant Leaves/physiology , Populus/growth & development , Populus/physiology , RNA, Circular/physiology , RNA, Long Noncoding/physiology , RNA, Plant/physiology
8.
J Ethnopharmacol ; 263: 113252, 2020 Dec 05.
Article in English | MEDLINE | ID: mdl-32798614

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The medicinal plant Pinellia ternata has been widely used in China, Korea, and Japan and has been demonstrated to be highly effective for treating cough, vomiting, infection, and inflammatory diseases. Modern pharmacological investigations have demonstrated its multiple activities, such as antitussive, expectorant, antiemetic, antitumor, antibacterial, and sedative-hypnotic activities. AIM OF THE REVIEW: This review aims to summarize the information about the biological traits, genetic diversity, active components, and continuous cropping obstacle of P. ternata in order to improve its use. MATERIALS AND METHODS: In this review, the relevant literature was gathered by using Pinellia ternata, genetic diversity, active components, and continuous cropping obstacle as the keywords from Google Scholar, PubMed, Springer Link, the Wiley online library, SciFinder, SCOPUS, Baidu Scholar, China national knowledge infrastructure (CNKI), and WANFANF DATA (up to April 2020). RESULTS: P. ternata is the most widely used herb in the Pinellia genus to treat several diseases. The genetic diversity of P. ternata has been extensively studied, and its high genetic diversity level in China has been demonstrated. Modern pharmacological research has indicated that amino acids, alkaloids, and polysaccharides are the main active components supporting P. ternata's medicinal effects. However, an efficient method for determining its active components is still unavailable. The method used to evaluate Pinelliae Rhizoma (PR) quality standards should be further optimized. The continuous cropping obstacle has a significant effect on the quantity and quality of P. ternata. The underlying mechanism of the continuous cropping obstacle needs to be further explored. CONCLUSIONS: P. ternata has emerged as a valuable source of traditional medicine. Some uses of P. ternata in medicine have been validated by pharmacological investigations. However, a more efficient analytical method should be established to evaluate the quality of PR based on multiple quality markers. Furthermore, high-performance liquid chromatography (HPLC) and DNA barcoding should be introduced to identify the authenticity of PR. In addition, the genes involved in the metabolic synthesis pathways of the main active components, population genetic relationships, the quality control of processed PR, and the continuous cropping obstacle need to be further elucidated. We hope this review will allow for better utilization of this valuable herb.


Subject(s)
Genetic Variation/genetics , Pinellia/genetics , Plants, Medicinal/genetics , Seeds/genetics , Alkaloids/genetics , Alkaloids/isolation & purification , Animals , China/ethnology , Chromatography, High Pressure Liquid/methods , Humans , Japan/ethnology , Republic of Korea/ethnology
9.
Sci Rep ; 10(1): 1362, 2020 Jan 28.
Article in English | MEDLINE | ID: mdl-31992780

ABSTRACT

Relative gene expression analyses by RT-qPCR (reverse transcription-quantitative PCR) are highly dependent on the reference genes in normalizing the expression data of target genes. Therefore, inappropriate endogenous control genes will lead to inaccurate target gene expression profiles, and the selection and validation of suitable internal reference genes becomes essential. In this study, we retrieved the commonly used reference genes in transcriptome datasets of Codonopsis pilosula by RNA-Seq (unpublished data), and selected 15 candidate reference genes according to the coefficient of variation (CV) and fold change (FC) value of gene expression. The expression levels of candidate reference genes, which is at different growth stages, undergoing cold stress and drought stress, was determined by RT-qPCR. The expression stability of these genes was evaluated using software packages and algorithms including ΔCt, geNorm, NormFinder and Bestkeeper. Then appropriate reference genes were screened and validated by target gene-UDGPase (UDP glucose pyrophosphorylase). The optimal RGs combinations of C. pilosula, including PP2A59γ, CPY20-1, UBCE32, RPL5B and UBC18 for developmental stage, RPL5B, RPL13 and PP2A59γ for cold treatment, RPL13 and PP2A59γ for drought treatment, were found and proposed as reference genes for future work. This paper laid foundations for both the selection of reference genes and exploration in metabolic mechanism of C. pilosula.


Subject(s)
Codonopsis , Gene Expression Profiling/standards , Gene Expression Regulation, Plant , Genes, Plant , Plant Proteins , Reverse Transcriptase Polymerase Chain Reaction/standards , Codonopsis/genetics , Codonopsis/metabolism , Plant Proteins/biosynthesis , Plant Proteins/genetics , Reference Standards
10.
Plant Physiol Biochem ; 139: 33-43, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30878836

ABSTRACT

Senna obtusifolia is a widely used medicinal herb in Asian countries. To select elite cultivars, S. obtusifolia seeds were carried by "ShenZhou Ⅷ" recoverable satellite to space. Three spaceflight-subjected lines (SP-lines), namely QC10, QC29, QC46, and their ground control line (GC-line) were cultivated on the ground. Previous studies demonstrated that biological traits and secondary metabolites are different between SP-lines and GC-line. Here, we combined physiological, transcriptional, and metabolic studies to compare the differences between SP-lines and GC-line. The results showed that activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX), and monodehydroascorbate reductase (MDHAR) were dramatically increased in SP-lines as compared to that of GC-line. Transcript levels of SOD, POD, CAT, APX, and MDHAR were significantly up-regulated in SP-lines. Malondialdehyde (MDA) and hydrogen peroxide (H2O2) contents decreased in SP-lines. Seed yields of QC29 and QC46 were considerably higher than that of GC-line. Besides, QC29 had significantly higher aurantio-obtusin content. Pearson correlation coefficient analysis revealed positive relationships between POD and aurantio-obtusin, as well as APX and aurantio-obtusin. In conclusion, SP-lines have higher antioxidant gene expression level and antioxidant enzyme activity as compared to that of GC-line. With higher seed yield and aurantio-obtusin content, QC29 can be used to breed elite S. obtusifolia cultivars. This study provides a new insight in SP-lines and paves the way to breed elite S. obtusifolia cultivars in the future.


Subject(s)
Senna Plant/physiology , Antioxidants/metabolism , Chromatography, High Pressure Liquid , Gene Expression Profiling , Gene Expression Regulation, Plant , Hydrogen Peroxide/metabolism , Malondialdehyde/metabolism , Proline/metabolism , Secondary Metabolism , Senna Plant/metabolism , Space Flight
11.
Can J Microbiol ; 65(4): 282-295, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30508393

ABSTRACT

Pinellia ternata is a traditional Chinese herb that suffers from continuous cropping (CC), which significantly decreases both yield and quality. The influence of CC on the microbiome in P. ternata rhizosphere and the effects of remediation on microbiota by rotational cropping (CR) were assessed by Illumina high-throughput sequencing technology. CC tends to decrease the α-diversities as a function of cultivation time, whereas CR tends to increase them. Differentially abundant analysis showed that microbial structure was important in maintaining the health status of P. ternata rhizosphere. Results suggested that CC soils were mainly enriched for Pseudomonas, Rhizobium, and Streptophyta operational taxonomic units (OTUs), while the CR soils were mainly enriched for Rhizobium, Pseudomonas, Flavobacterium, Sphingomonas, Rhizobacter, and Arthrobacter OTUs. On the basis of the community dissimilarities, we grouped all sample replicates into three post hoc clusters in which soils were defined as healthy, health-suppressed, and health-depressed soils. The three soil types represented different soil physicochemical properties. The activities of the microbiome features, including ammonia oxidizer, sulfate reducer, nitrite reducer, dehalogenation, xylan degrader, sulfide oxidizer, nitrogen fixation, atrazine metabolism, chitin degradation, degraded aromatic hydrocarbons, and chlorophenol degradation, were also considerably different among the three soils.


Subject(s)
Crop Production/methods , Microbiota , Pinellia/physiology , Rhizosphere , Soil Microbiology , Soil/chemistry , Agriculture/methods , Biodiversity , Drugs, Chinese Herbal/chemistry , Pinellia/chemistry
12.
Bot Stud ; 58(1): 43, 2017 Nov 02.
Article in English | MEDLINE | ID: mdl-29098509

ABSTRACT

BACKGROUND: Senna obtusifolia and Senna occidentalis (Leguminosae), whose seeds have similar appearance and chemical constituents, are easily confused in using their seeds. To elucidate the similarities and differences between S. obtusifolia seeds and S. occidentalis seeds, three molecular markers and high performance liquid chromatography (HPLC) were employed to evaluate the seeds characteristics of these two medicinal herbs. RESULTS: The results showed that selected 3 ISSR and 7 SCoT primers could distinguish S. obtusifolia seeds from S. occidentalis seeds based on the specific band and UPGMA dendrogram. ITS2 sequence indicated that the intra-specific similarity of 20 S. obtusifolia and 16 S. occidentalis was 99.79 and 100.0%, respectively, while the inter-specific similarity between S . obtusifolia and S. occidentalis was 89.58%. Although phylogenetic analysis revealed that these two species had a close relationship, they were assigned to different branches. HPLC fingerprint results showed that seeds of S. obtusifolia and S. occidentalis shared some secondary metabolites, but aurantio-obtusin was not detected in S. occidentalis seeds which could differentiate S. obtusifolia seeds from S. occidentalis seeds. CONCLUSIONS: The present study not only compared the seeds characters of S. obtusifolia and S. occidentalis from molecular and secondary metabolites levels, but also provided a convenient method to identify S. obtusifolia seeds and S. occidentalis seeds effectively.

13.
PLoS One ; 11(8): e0159905, 2016.
Article in English | MEDLINE | ID: mdl-27483013

ABSTRACT

Replanting disease is a major factor limiting the artificial cultivation of the traditional Chinese medicinal herb Salvia miltiorrhiza. At present, little information is available regarding the role of miRNAs in response to replanting disease. In this study, two small RNA libraries obtained from first-year (FPR) and second-year plant (SPR) roots were subjected to a high-throughput sequencing method. Bioinformatics analysis revealed that 110 known and 7 novel miRNAs were annotated in the roots of S. miltiorrhiza. Moreover, 39 known and 2 novel miRNAs were identified and validated for differential expression in FPR compared with SPR. Thirty-one of these miRNAs were further analyzed by qRT-PCR, which revealed that 5 miRNAs negatively regulated the expression levels of 7 target genes involved in root development or stress responses. This study not only provides novel insights into the miRNA content of S. miltiorrhiza in response to replanting disease but also demonstrates that 5 miRNAs may be involved in these responses. Interactions among the differentially expressed miRNAs with their targets may form an important component of the molecular basis of replanting disease in S. miltiorrhiza.


Subject(s)
MicroRNAs/genetics , Plant Diseases/genetics , RNA, Plant/genetics , Salvia miltiorrhiza/growth & development , Salvia miltiorrhiza/genetics , Gene Expression Profiling , Gene Expression Regulation, Plant , High-Throughput Nucleotide Sequencing , Plant Breeding , Plant Roots/genetics , Plant Roots/growth & development , Sequence Analysis, RNA
14.
Plant Cell Rep ; 35(9): 1933-42, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27271760

ABSTRACT

KEY MESSAGE: Phosphate starvation increased the production of phenolic acids by inducing the key enzyme genes in a positive feedback pathway in Saliva miltiorrhiza hairy roots. SPX may be involved in this process. Salvia miltiorrhiza is a wildly popular traditional Chinese medicine used for the treatment of coronary heart diseases and inflammation. Phosphate is an essential plant macronutrient that is often deficient, thereby limiting crop yield. In this study, we investigated the effects of phosphate concentration on the biomass and accumulation of phenolic acid in S. miltiorrhiza. Results show that 0.124 mM phosphate was favorable for plant growth. Moreover, 0.0124 mM phosphate was beneficial for the accumulation of phenolic acids, wherein the contents of danshensu, caffeic acid, rosmarinic acid, and salvianolic acid B were, respectively, 2.33-, 1.02-, 1.68-, and 2.17-fold higher than that of the control. By contrast, 12.4 mM phosphate inhibited the accumulation of phenolic acids. The key enzyme genes in the phenolic acid biosynthesis pathway were investigated to elucidate the mechanism of phosphate starvation-induced increase of phenolic acids. The results suggest that phosphate starvation induced the gene expression from the downstream pathway to the upstream pathway, i.e., a feedback phenomenon. In addition, phosphate starvation response gene SPX (SYG1, Pho81, and XPR1) was promoted by phosphate deficiency (0.0124 mM). We inferred that SPX responded to phosphate starvation, which then affected the expression of later responsive key enzyme genes in phenolic acid biosynthesis, resulting in the accumulation of phenolic acids. Our findings provide a resource-saving and environmental protection strategy to increase the yield of active substance in herbal preparations. The relationship between SPX and key enzyme genes and the role they play in phenolic acid biosynthesis during phosphate deficiency need further studies.


Subject(s)
Gene Expression Regulation, Plant , Genes, Plant , Hydroxybenzoates/metabolism , Phosphates/deficiency , Plant Proteins/genetics , Plant Roots/genetics , Salvia miltiorrhiza/enzymology , Salvia miltiorrhiza/genetics , Biosynthetic Pathways/drug effects , Biosynthetic Pathways/genetics , Gene Expression Regulation, Plant/drug effects , Phosphates/pharmacology , Plant Proteins/metabolism , Plant Roots/drug effects , Plant Roots/growth & development , Salvia miltiorrhiza/drug effects , Salvia miltiorrhiza/metabolism
15.
Environ Int ; 77: 85-94, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25667057

ABSTRACT

The pollution profiles of volatile organic compounds (VOCs) emitted from different recycling workshops processing different types of plastic solid waste (PSW) and their health risks were investigated. A total of 64 VOCs including alkanes, alkenes, monoaromatics, oxygenated VOCs (OVOCs), chlorinated VOCs (ClVOCs) and acrylonitrile during the melting extrusion procedure were identified and quantified. The highest concentration of total VOCs (TVOC) occurred in the poly(acrylonitrile-butadiene styrene) (ABS) recycling workshop, followed by the polystyrene (PS), polypropylene (PP), polyamide (PA), polyvinyl chloride (PVC), polyethylene (PE) and polycarbonate (PC) workshops. Monoaromatics were found as the major component emitted from the ABS and PS recycling workshops, while alkanes were mainly emitted from the PE and PP recycling processes, and OVOCs from the PVC and PA recycling workshops. According to the occupational exposure limits' (OEL) assessment, the workers suffered acute and chronic health risks in the ABS and PS recycling workshops. Meanwhile, it was found that most VOCs in the indoor microenvironments were originated from the melting extrusion process, while the highest TVOC concentration was observed in the PS rather than in the ABS recycling workshop. Non-cancer hazard indices (HIs) of all individual VOCs were <1.0, whereas the total HI in the PS recycling workshop was 1.9, posing an adverse chronic health threat. Lifetime cancer risk assessment suggested that the residents also suffered from definite cancer risk in the PS, PA, ABS and PVC recycling workshops.


Subject(s)
Occupational Exposure/analysis , Plastics/chemistry , Recycling , Risk Assessment/methods , Solid Waste , Volatile Organic Compounds/analysis , Air Pollution, Indoor/analysis , Humans , Plastics/analysis , Solid Waste/adverse effects , Solid Waste/analysis , Volatile Organic Compounds/chemistry
16.
Environ Int ; 73: 186-94, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25129414

ABSTRACT

Pollution profiles of typical volatile organic compounds (VOCs) emitted during dismantling of various printed circuit board assemblies (PCBAs) of e-wastes using different methods were comparatively investigated in the real e-waste dismantling workshops in South China in April 2013. Similar pollution profiles and concentrations of VOCs were observed between dismantling mobile phone and hard disk PCBAs by using electric blowers and between dismantling television and power supplier PCBAs using electric heating furnaces. Aromatic hydrocarbons (accounting for >60% of the sum of VOCs) were the dominant group during using electric blowers, while aromatic (accounting for >44% of the sum of VOCs) and halogenated hydrocarbons (accounting for >48% of the sum of VOCs) were the two dominant groups which contributed equally using electric heating furnaces. However, the distribution profiles of VOCs emitted during dismantling of televisions, hard disks and micro motors using rotary incinerators varied greatly, though aromatic hydrocarbons were still the dominant group. The combustion of e-wastes led to the most severe contamination of VOCs, with total VOCs (3.3×10(4) µg m(-3)) using rotary incinerators about 190, 180, 139, and 40 times higher than those using mechanical cutting, electric soldering iron, electric blower, and electric heating furnace, respectively. Both cancer and non-cancer risks existed for workers due to exposure to on-site emitted VOCs in all workshops especially in those using rotary incinerators according to the USEPA methodology, whereas only cancer risks existed in rotary incinerator workshops according to the American Conference of Industrial Hygienists methodology.


Subject(s)
Air Pollutants/analysis , Electronic Waste , Volatile Organic Compounds/analysis , Air Pollution , China , Humans , Incineration , Neoplasms/epidemiology , Occupational Exposure , Risk Assessment , United States , United States Environmental Protection Agency
17.
J Hazard Mater ; 190(1-3): 416-23, 2011 Jun 15.
Article in English | MEDLINE | ID: mdl-21501924

ABSTRACT

A series of adsorptive photocatalysts, combined titania-montmorillonite-silica were synthesized. The resultant photocatalysts consisted of more and more spherically agglomerated TiO(2) particles with increasing of TiO(2) content, and anatase was the only crystalline phase with nano-scale TiO(2) particles. With increasing of the cation exchange capacity to TiO(2) molar ratio, specific surface area and pore volume increased very slightly. In a fluidized bed photocatalytic reactor by choosing toluene, ethyl acetate and ethanethiol as model pollutants, all catalysts had relatively high adsorption capacities and preferred to adsorb higher polarity pollutants. Langmuir isotherm model better described equilibrium data compared to Freundlich model. Competitive adsorptions were observed for the mixed pollutants on the catalysts, leading to decrease adsorption capacity for each pollutant. The combined titania-montmorillonite-silica photocatalyst exhibited excellent photocatalytic removal ability to model pollutants of various components. Almost 100% of degradation efficiency was achieved within 120 min for each pollutant with about 500 ppb initial concentration, though the efficiencies of multi-component compounds slightly decreased. All photocatalytic reactions followed the Langmuir-Hinshelwood model. Degradation rate constants of multi-component systems were lower than those for single systems, following the order of toluene

Subject(s)
Environmental Pollutants/chemistry , Environmental Restoration and Remediation/methods , Photochemical Processes , Silicon Dioxide/chemistry , Volatile Organic Compounds/chemistry , Acetates , Adsorption , Bentonite/chemistry , Catalysis , Environmental Pollutants/isolation & purification , Ion Exchange , Kinetics , Photochemical Processes/drug effects , Photochemical Processes/radiation effects , Sulfhydryl Compounds , Titanium/chemistry , Toluene , Volatile Organic Compounds/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...