Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
ACS Appl Mater Interfaces ; 16(14): 17881-17890, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38537646

ABSTRACT

Two-dimensional (2D) semiconductors have recently attracted considerable attention due to their promising applications in future integrated electronic and optoelectronic devices. Large-scale synthesis of high-quality 2D semiconductors is an increasingly essential requirement for practical applications, such as sensing, imaging, and communications. In this work, homogeneous 2D GaTe films on a centimeter scale are epitaxially grown on fluorphlogopite mica substrates by molecular beam epitaxy (MBE). The epitaxial GaTe thin films showed an atomically 2D layered lattice structure with a T phase, which has not been discovered in the GaTe geometric isomer. Furthermore, semiconducting behavior and high mobility above room temperature were found in T-GaTe epitaxial films, which are essential for application in semiconducting devices. The T-GaTe-based photodetectors demonstrated respectable photodetection performance with a responsivity of 13 mA/W and a fast response speed. By introducing monolayer graphene as the substrate, we successfully realized high-quality GaTe/graphene heterostructures. The performance has been significantly improved, such as the responsivity was enhanced more than 20 times. These results highlight a feasible scheme for exploring the crystal phase of 2D GaTe and realizing the controlled growth of GaTe films on large substrates, which could promote the development of broadband, high-performance, and large-scale photodetection applications.

2.
Molecules ; 29(4)2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38398504

ABSTRACT

Polycarboxylic superplasticizers (PCEs) exhibit numerous advantages as concrete additives, effectively improving the stability and strength of concrete. However, competitive adsorption of PCEs occurs in the presence of clay, which may affect the cement dispersion and water-reducing performance. Extensive research has been conducted on the physical and mechanical properties of PCEs; however, the effect of the diverse structures of PCEs on the competitive adsorption on clay and cement hydration products has been rarely studied. This study employs Ca-montmorillonite (CaMMT) as a clay representative, by constructing adsorption models of PCEs on CaMMT and cement hydration products. A comparison of the adsorption energies considering different side-chain lengths of PCEs is included. Typically, the adsorption energy on CaMMT is lower than that on hydration products, leading PCEs to preferentially adsorb on the clay, thereby reducing its effective dosage in the cement particles. The challenge of PCE adsorption on CaMMT increases with the polymerization degree, and methylallyl polyoxyethylene ether (HPEG) exhibits lower adsorption energies on CaMMT. The density of states (DOS) analysis indicated the highest peak values of allyl polyethylene ether (APEG) as well as the peak area at n (polymerization degree) = 1. The total number of transferred electrons for APEG was 0.648, surpassing those of other PCEs. The interaction mechanism of PCEs with clay and hydration products is further elucidated through electronic gain/loss analysis, also providing a basis for the theoretical analysis on how to reduce the adsorption of PCEs on clay and the structural design of mud-resistant PCEs.

3.
Burns ; 50(4): 913-923, 2024 05.
Article in English | MEDLINE | ID: mdl-38267288

ABSTRACT

BACKGROUND: Severe burns are devastating injuries with significant immune dysfunction and result in substantial mortality and morbidity due to sepsis induced organ failure. Acute lung injury is the most common type of organ injury in sepsis, however, the mechanisms of which are poorly understood and effective therapeutic measures are limited. This study is aimed to investigate the effect of a small Guanosine triphosphatase (GTPase), Adenosine diphosphate ribosylation factor 6 (ARF6), on burn sepsis induced lung injury, and discuss the possible mechanisms. METHODS: Burn sepsis was established in male C57BL/6 mice. Mice were anesthetised by intramuscular injection of ketamine and xylazine hydrochloride, then 30% TBSA full thickness burn followed by sub-eschar injection of lipopolysaccharide. Animals were treated with intraperitoneal injection of a small molecule inhibitor of ARF6: NAV-2729, or vehicle, right after the burn and sepsis stimuli were inflicted. Lung tissues were harvested for histopathological observation and the acute lung injury scores were calculated. Organ permeability, Vascular Endothelial Cadherin (VE-cadherin) expression, inflammatory cytokine levels and myeloperoxidase activity in lung tissues were detected. Rat pulmonary microvascular endothelial cells (PMVECs) were stimulated by burn sepsis serum with or without 10 µM NAV-2729. The ARF6 activation, VE-cadherin expression, inflammasome activity, adapter protein apoptosis speck-like protein containing a caspase recruiting domain (ASC) specks and cytokines secretion were determined. Student's t test was used for comparison between two groups. Multiple comparisons among groups were performed by using analysis of variance, with Tukey's test for the post hoc test. RESULTS: NAV-2729 treatment attenuated burn sepsis induced lung injury and promoted survival of burn septic mice by preserving VE-cadherin expression in endothelial cell adherent junction and limited vascular hyperpermeability in lung tissues. Moreover, inflammatory cytokine expression and inflammatory injury in lung tissues were alleviated. Mechanistically, NAV-2729 enhanced vascular integrity by inhibiting ARF6 activation and restoring VE-cadherin expression in PMVECs. In addition, NAV-2729 inhibited ARF6-dependent phagocytosis of ASC specks, thus preventing inflammation propagation mediated by cell-to-cell transmission of ASC specks. CONCLUSIONS: ARF6 inhibition preserved vascular integrity by restoring expression of VE-cadherin and suppressed the spread of inflammation by affecting phagocytosis of ASC specks, thus protected against sepsis induced lung injury and improve survival of burn septic animals. The findings of this study implied potential therapeutics by which ARF6 inhibition can protect lung function from septic induced lung injury and improve outcomes in burn sepsis.


Subject(s)
ADP-Ribosylation Factor 6 , Acute Lung Injury , Burns , Cadherins , Inflammasomes , Mice, Inbred C57BL , Sepsis , Animals , Burns/complications , Burns/metabolism , Sepsis/complications , Sepsis/metabolism , Mice , Inflammasomes/metabolism , Inflammasomes/drug effects , Cadherins/metabolism , Male , Acute Lung Injury/prevention & control , Acute Lung Injury/metabolism , Acute Lung Injury/etiology , Antigens, CD/metabolism , Lung/drug effects , Lung/metabolism , Lung/pathology , Peroxidase/metabolism , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Capillary Permeability/drug effects , Rats , Disease Models, Animal , Cytokines/metabolism
4.
Sci Adv ; 9(49): eadj4656, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38055810

ABSTRACT

Intrinsic gain is a vital figure of merit in transistors, closely related to signal amplification, operation voltage, power consumption, and circuit simplification. However, organic thin-film transistors (OTFTs) targeted at high gain have suffered from challenges such as narrow subthreshold operating voltage, low-quality interface, and uncontrollable barrier. Here, we report a van der Waals metal-barrier interlayer-semiconductor junction-based OTFT, which shows ultrahigh performance including ultrahigh gain of ~104, low saturation voltage, negligible hysteresis, and good stability. The high-quality van der Waals-contacted junctions are mainly attributed to patterning EGaIn liquid metal electrodes by low-energy microfluidic processes. The wide-bandgap semiconductor Ga2O3 as barrier interlayer is achieved by in situ surface oxidation of EGaIn electrodes, allowing for an adjustable barrier height and expected thermionic emission properties. The organic inverters with a high gain of 5130 and a simplified current stabilizer are further demonstrated, paving a way for high-gain and low-power organic electronics.

5.
Adv Sci (Weinh) ; 10(17): e2205609, 2023 06.
Article in English | MEDLINE | ID: mdl-37092581

ABSTRACT

Flexible photodetectors with ultra-broadband sensitivities, fast response, and high responsivity are crucial for wearable applications. Recently, van der Waals (vdW) Weyl semimetals have gained much attention due to their unique electronic band structure, making them an ideal material platform for developing broadband photodetectors from ultraviolet (UV) to the terahertz (THz) regime. However, large-area synthesis of vdW semimetals on a flexible substrate is still a challenge, limiting their application in flexible devices. In this study, centimeter-scale type-II vdW Weyl semimetal, Td -MoTe2 films, are grown on a flexible mica substrate by molecular beam epitaxy. A self-powered and flexible photodetector without an antenna demonstrated an outstanding ability to detect electromagnetic radiation from UV to sub-millimeter (SMM) wave at room temperature, with a fast response time of ≈20 µs, a responsivity of 0.53 mA W-1 (at 2.52 THz), and a noise-equivalent power (NEP) of 2.65 nW Hz-0.5 (at 2.52 THz). The flexible photodetectors are also used to image shielded items with high resolution at 2.52 THz. These results can pave the way for developing flexible and wearable optoelectronic devices using direct-grown large-area vdW semimetals.

6.
J Hematol Oncol ; 15(1): 47, 2022 04 29.
Article in English | MEDLINE | ID: mdl-35488243

ABSTRACT

The gut microbiota have long been recognized to play a key role in human health and disease. Currently, several lines of evidence from preclinical to clinical research have gradually established that the gut microbiota can modulate antitumor immunity and affect the efficacy of cancer immunotherapies, especially immune checkpoint inhibitors (ICIs). Deciphering the underlying mechanisms reveals that the gut microbiota reprogram the immunity of the tumor microenvironment (TME) by engaging innate and/or adaptive immune cells. Notably, one of the primary modes by which the gut microbiota modulate antitumor immunity is by means of metabolites, which are small molecules that could spread from their initial location of the gut and impact local and systemic antitumor immune response to promote ICI efficiency. Mechanistic exploration provides novel insights for developing rational microbiota-based therapeutic strategies by manipulating gut microbiota, such as fecal microbiota transplantation (FMT), probiotics, engineered microbiomes, and specific microbial metabolites, to augment the efficacy of ICI and advance the age utilization of microbiota precision medicine.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Fecal Microbiota Transplantation , Humans , Immunity , Immunotherapy
7.
ACS Appl Mater Interfaces ; 14(12): 14630-14639, 2022 Mar 30.
Article in English | MEDLINE | ID: mdl-35290011

ABSTRACT

Ionic polymer-metal composites (IPMC), one of the most popular materials in the field of artificial muscle research, have attracted much attention because of their high flexibility, low drive voltage (<10 V), high force density, large deformation, and so forth. However, the results show that the serious electrode fatigue crack and water loss of traditional IPMC greatly decrease its fatigue life and limit the practical application. In this study, we developed a novel liquid metal composite electrode. A layer of eutectic gallium-indium alloy (EGaIn) liquid metal was applied to the surface of the platinum electrode of the IPMC using a mask. Because of the good self-healing performance of the liquid metal, it is expected to solve the above problems of resistance increase and water loss caused by cracks. It turns out that the prepared EGaIn/Pt-IPMC exhibits a driving force up to 120 mN and maximum fatigue life of about 25,000 s at a driving voltage of 3 V. Compared with the best work reported, the fatigue strength of EGaIn/Pt-IPMC was increased by about 210%, and the maximum driving force of EGaIn/Pt-IPMC prepared by a single-layer basement membrane was between the IPMC prepared by 4-6 layer basement membrane. The electromechanical properties were significantly improved, and it is expected to realize a series of bionic applications.

8.
Entropy (Basel) ; 25(1)2022 Dec 23.
Article in English | MEDLINE | ID: mdl-36673173

ABSTRACT

In addition to various estimation algorithms, the target localization accuracy in wireless sensor networks (WSNs) can also be improved from the perspective of geometry optimization. Note that existing placement strategies are mainly aimed at unconstrained deployment regions, i.e., the positions of sensors are arbitrary. In this paper, considering factors such as terrain, communication, and security, the optimal range-based sensor geometries under circular deployment region and minimum safety distance constraints are proposed. The geometry optimization problem is modeled as a constrained optimization problem, with a D-optimality-based (maximizing the determinant of FIM matrix) scalar function as the objective function and the irregular feasible deployment regions as the constraints. We transform the constrained optimization problem into an equivalent form using the introduced maximum feasible angle and separation angle, and discuss the optimal geometries based on the relationship between the minimum safety distance and the maximum feasible angle. We first consider optimal geometries for two and three sensors in the localization system, and then use their findings to extend the study to scenarios with arbitrary numbers of sensors and arbitrarily shaped feasible regions. Numerical simulation results are included to verify the theoretical conclusions.

9.
Front Public Health ; 10: 1100401, 2022.
Article in English | MEDLINE | ID: mdl-36711394

ABSTRACT

Background: The frequent occurrence of major public health emergencies globally poses a threat to people's life, health, and safety, and the convergence development of digital technology is very effective and necessary to cope with the outbreak and transmission control of public epidemics such as COVID-19, which is essential to improve the emergency management capability of global public health emergencies. Methods: The published literatures in the Web of Science Core Collection database from 2003 to 2022 were utilized to analyze the contribution and collaboration of the authors, institutions, and countries, keyword co-occurrence analysis, and research frontier identification using the CiteSpace, VOSviewer, and COOC software. Results: The results are shown as follows: (1) Relevant research can be divided into growth and development period and rapid development period, and the total publications show exponential growth, among which the USA, China, and the United Kingdom are the most occupied countries, but the global authorship cooperation is not close; (2) clustering analysis of high-frequency keyword, all kinds of digital technologies are utilized, ranging from artificial intelligence (AI)-driven machine learning (ML) or deep learning (DL), and focused application big data analytics and blockchain technology enabled the internet of things (IoT) to identify, and diagnose major unexpected public diseases are hot spots for future research; (3) Research frontier identification indicates that data analysis in social media is a frontier issue that must continue to be focused on to advance digital and smart governance of public health events. Conclusion: This bibliometric study provides unique insights into the role of digital technologies in the emergency management of public health. It provides research guidance for smart emergency management of global public health emergencies.


Subject(s)
COVID-19 , Public Health , Humans , Artificial Intelligence , COVID-19/epidemiology , Emergencies , Bibliometrics
10.
J Vet Sci ; 22(4): e50, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34170091

ABSTRACT

BACKGROUND: Bovine papillomatosis is a type of proliferative tumor disease of skin and mucosae caused by bovine papillomavirus (BPV). As a transboundary and emerging disease in cattle, it poses a potential threat to the dairy industry. OBJECTIVES: The aim of this study is to detect and clarify the genetic diversity of BPV circulating in dairy cows in Xinjiang, China. METHODS: 122 papilloma skin lesions from 8 intensive dairy farms located in different regions of Xinjiang, China were detected by polymerase chain reaction. The genetic evolution relationships of various types of BPVs were analyzed by examining this phylogenetic tree. RESULTS: Ten genotypes of BPV (BPV1, BPV2, BPV3, BPV6, BPV7, BPV8, BPV10, BPV11, BPV13, and BPV14) were detected and identified in dairy cows. These were the first reported detections of BPV13 and BPV14 in Xinjiang, Mixed infections were detected, and there were geographical differences in the distribution of the BPV genotypes. Notably, the BPV infection rate among young cattle (< 1-year-old) developed from the same supply of frozen sperm was higher than that of the other young cows naturally raised under the same environmental conditions. CONCLUSIONS: Genotyping based on the L1 gene of BPV showed that BPVs circulating in Xinjiang China displayed substantial genetic diversity. This study provided valuable data at the molecular epidemiology level, which is conducive to developing deep insights into the genetic diversity and pathogenic characteristics of BPVs in dairy cows.


Subject(s)
Cattle Diseases/virology , Deltapapillomavirus/genetics , Deltapapillomavirus/isolation & purification , Genetic Variation , Papillomavirus Infections/veterinary , Animals , Cattle , Cattle Diseases/epidemiology , Dairying , Female , Papillomavirus Infections/epidemiology , Papillomavirus Infections/virology
11.
ACS Appl Mater Interfaces ; 13(19): 22757-22764, 2021 May 19.
Article in English | MEDLINE | ID: mdl-33973469

ABSTRACT

Mid-infrared (MIR) photodetection is of significance in civil and military applications because it shows superiority in absorbing the vibration of various molecules and covering atmospheric transmission windows. Recently, the PtTe2, a typical type-II Dirac semimetal, has come under the spotlight due to its unique photodetection sensibility in the MIR region and robust stability in the atmosphere. Here, the high-quality and large-scale 1T-PtTe2 thin films with air stability were grown by molecular beam epitaxy. Broadband photoresponse of the photodetectors of PtTe2 from 420 nm to 10.7 µm shows high responsivity and detectivity of 0.2 mA W-1 and 2.6 × 107 Jones at 10.7 µm and 1.6 mA W-1 and 2.2 × 108 Jones at 4.7 µm under the atmosphere, respectively. Moreover, the photodetectors exhibit high sensitivity in visible and near-infrared regions (8.2 mA W-1 at 650 nm and 15.6 mA W-1 at 960 nm). The power- and polarization-dependent photoresponse measurements reveal the linear relationship of power photoresponse and obvious anisotropic photoresponse (the ratio of anisotropy ellipse is 8.3 at 10.7 µm), respectively. These results suggest that the PtTe2 could be expected to be an advanced photodetection material for polarization angle-sensitive detection, infrared imaging, and photodetection from the visible to MIR range.

12.
Comput Struct Biotechnol J ; 18: 3361-3367, 2020.
Article in English | MEDLINE | ID: mdl-33294132

ABSTRACT

Cancer staging provides a common language that is used to describe the severity of an individual's cancer, which plays a critical role in optimizing cancer treatment. Recursive partitioning analysis (RPA) is the most widely accepted method for cancer staging. Despite its widespread use, to date, only limited tools have been developed to implement the RPA algorithm for cancer staging. Moreover, most of the available tools can be accessed only from command lines and also lack visualization, making them difficult for clinical investigators without programing skills to use. Therefore, we developed a web server called autoRPA that is dedicated to supporting the construction of prognostic staging models and performance comparisons among different staging models. Based on the RPA algorithm and log-rank test statistics, autoRPA can establish a decision-making tree from survival data and provide clinicians an intuitive method to further prune the decision tree. Moreover, autoRPA can evaluate the contribution of each submitted covariate that is involved in the grouping process and help identify factors that significantly contribute to cancer staging. Four indicators, including hazard consistency, hazard discrimination, percentage of variation explained, and sample size balance, are introduced to validate the performance of the designed staging models. In addition, autoRPA can also be used to compare the performance of different prognostic staging models using a standard bootstrap evaluation method. The web server of autoRPA is freely available at http://rpa.renlab.org.

13.
ACS Appl Mater Interfaces ; 12(39): 44067-44073, 2020 Sep 30.
Article in English | MEDLINE | ID: mdl-32901478

ABSTRACT

The enhancement of electron-phonon interaction provides a reasonable explanation for gate-tunable phonon properties in some semiconductors where multiple inequivalent valleys are simultaneously occupied upon charge doping, especially in few-layer transition metal dichalcogenides (TMDs). In this work, we report var der Waals epitaxy of 2H-MoSe2 by molecular beam epitaxy (MBE) and gate-tunable phonon properties in monolayer and bilayer MoSe2. In monolayer MoSe2, we find that out-of-plane phonon mode A1g exhibits a strong softening and shifting toward lower wavenumbers at a high electron doping level, while in-plane phonon mode E2g1 remains unchanged. The softening and shifting of the out-of-plane phonon mode could be attributed to the increase of electron-phonon interaction and the simultaneous occupation of electrons in multiple inequivalent valleys. In bilayer MoSe2, no corresponding changes of phonon modes are detected at the same doping level, which could originate from the occupation of electrons only in single valleys upon high electron doping. This study demonstrates electrostatically enhanced electron-phonon interaction in monolayer MoSe2 and clarifies the relevance between occupation of multiple valleys and phonon properties by comparing Raman spectra of monolayer and bilayer MoSe2 at different doping levels.

14.
Mech Dev ; 162: 103609, 2020 06.
Article in English | MEDLINE | ID: mdl-32407762

ABSTRACT

BACKGROUND: Recent studies have shown that lipid metabolism was abnormal during the formation of cleft palate. However, the composition of these lipid species remains unclear. OBJECTIVE: Aims of this study were to identify the lipid species components and reveal the key lipid metabolic disorders in cleft palate formation. METHODS: The pregnant mice were divided into experimental group exposed to all-trans retinoic acid (RA-treated group) (n = 12) and control group (n = 12) at embryonic gestation day 10.5 (E0.5). The component of the palatal tissue metabolome was analyzed using a LCMS-based nontargeted lipidomics approach. Multivariate statistical analysis was then carried out to assess the differences between the RA-treated group and the control group. RESULTS: Twenty-nine lipid species were found to discriminate between RA-treated and control embryos. Among them, 28 lipid species increased and 1 lipid species decreased in the RA-treated group. Among these lipids, 13 were triglycerides, 9 were PEs, 3 were PCs, 2 were PSs, 2 were DGs. Further analysis of the number of carbons and unsaturated bond of triglycerides showed that TGs with high unsaturated bonds constituted a higher fraction in the RA-treated group. A higher amount of triglycerides containing 52, 54, 56, 58, 60 carbons, and 1 to 8 unsaturated bonds. Of note, under RA treatment, TG 50:1, 52:2, 56:6and 60:8 became the most prominent. CONCLUSION: Lipid metabolism is significantly different in the formation of cleft palate induced by RA, and the unsaturated triglycerides increased in the RA-treated group may play an important role in the formation of cleft palate.


Subject(s)
Cleft Palate/metabolism , Lipid Metabolism/physiology , Animals , Cleft Palate/drug therapy , Female , Lipid Metabolism/drug effects , Lipidomics/methods , Lipids , Mice , Pregnancy , Tretinoin/pharmacology , Triglycerides/metabolism
15.
Life Sci ; 253: 117600, 2020 Jul 15.
Article in English | MEDLINE | ID: mdl-32234492

ABSTRACT

BACKGROUND: Skin cutaneous melanoma (SKCM) is the most common subtype of skin malignancy, with ever-increasing incidence, mortality, and disease burden. Dysregulation of JAK-STATs signaling pathway is involved in the pathogenesis and progression of cancers, thus affecting the prognosis of cancer patients. The function of JAKs in SKCM is still not clarified. METHODS: A total of five online portal (GEPIA, TIMER, GeneMANIA, LinkedOmics, and GSCALite) is used to mine the expression and gene regulation network JAK2 in SKCM. RESULTS: JAK2 expression was downregulated in SKCM and significantly associated with pathological stage and the prognosis of patients. The functions of JAK2 and associated genes were primarily involved in the DNA recombination, cell cycle checkpoint, metabolic process, NOD-like receptor signaling pathways, p53 signaling pathway and apoptosis. JAK2 level was significantly correlated with the abundance of immune cells and the level of immune biomarkers. Low expression of JAK2 were resistant to QL-VIII-58, TL-1-85, Ruxolitinib, TG101348 and Sunitinib. CONCLUSIONS: Our results reveal the expression and gene regulation network of JAK2 in skin cutaneous melanoma, providing more evidences about the role of JAK2 in carcinogenesis.


Subject(s)
Antineoplastic Agents/pharmacology , Janus Kinases/metabolism , Melanoma/metabolism , Pyrazoles/pharmacology , Skin Neoplasms/drug therapy , Sunitinib/pharmacology , Antineoplastic Agents/metabolism , Databases, Nucleic Acid , Databases, Protein , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks/drug effects , Humans , Janus Kinases/genetics , MicroRNAs/metabolism , Models, Biological , Nitriles , Prognosis , Pyrazoles/metabolism , Pyrimidines , Signal Transduction , Skin Neoplasms/metabolism , Sunitinib/metabolism , Melanoma, Cutaneous Malignant
16.
ACS Appl Mater Interfaces ; 11(11): 10729-10735, 2019 Mar 20.
Article in English | MEDLINE | ID: mdl-30799597

ABSTRACT

Charge density wave (CDW) as a novel effect in two-dimensional transition metal dichalcogenides (TMDs) has obtained a rapid rise of interest for its physical nature and potential applications in oscillators and memory devices. Here, we report var der Waals epitaxial growth of centimeter-scale 1T-VTe2 thin films on mica by molecular beam epitaxy. The VTe2 thin films showed sudden resistance change at temperatures of 240 and 135 K, corresponding to two CDW phase transitions driven by temperature. Moreover, the phase transitions can be driven by an electric field due to local Joule heating, and the corresponding resistance states are nonvolatile and controllable, which could be applied to the memory device where the logic states can be switched by an electric field. The multistage CDW phase transitions in the VTe2 thin films could be contributed to electron-phonon coupling in the two-dimensional VTe2, which is supported by twice pronounced Raman blue shifts of the vibration modes associated with in-plane phonons at CDW phase transition temperature. The results open up a new platform for understanding the microscopic physical essence and electrical control of CDW phases of TMDs, expanding the functionalities of these materials for memory applications.

17.
Gigascience ; 7(5)2018 05 01.
Article in English | MEDLINE | ID: mdl-29617790

ABSTRACT

Background: Large-scale genome sequencing projects have identified many genetic variants for diverse diseases. A major goal of these projects is to characterize these genetic variants to provide insight into their function and roles in diseases. N6-methyladenosine (m6A) is one of the most abundant RNA modifications in eukaryotes. Recent studies have revealed that aberrant m6A modifications are involved in many diseases. Findings: In this study, we present a user-friendly web server called "m6ASNP" that is dedicated to the identification of genetic variants that target m6A modification sites. A random forest model was implemented in m6ASNP to predict whether the methylation status of an m6A site is altered by the variants that surround the site. In m6ASNP, genetic variants in a standard variant call format (VCF) are accepted as the input data, and the output includes an interactive table that contains the genetic variants annotated by m6A function. In addition, statistical diagrams and a genome browser are provided to visualize the characteristics and to annotate the genetic variants. Conclusions: We believe that m6ASNP is a very convenient tool that can be used to boost further functional studies investigating genetic variants. The web server "m6ASNP" is implemented in JAVA and PHP and is freely available at [60].


Subject(s)
Adenosine/analogs & derivatives , Computational Biology/methods , Polymorphism, Single Nucleotide/genetics , Software , Adenosine/genetics , Base Sequence , Gene Expression Regulation , Genome-Wide Association Study , Humans , Internet , Reproducibility of Results , Transcription, Genetic
18.
Nucleic Acids Res ; 46(D1): D139-D145, 2018 01 04.
Article in English | MEDLINE | ID: mdl-29036329

ABSTRACT

Identifying disease-causing variants among a large number of single nucleotide variants (SNVs) is still a major challenge. Recently, N6-methyladenosine (m6A) has become a research hotspot because of its critical roles in many fundamental biological processes and a variety of diseases. Therefore, it is important to evaluate the effect of variants on m6A modification, in order to gain a better understanding of them. Here, we report m6AVar (http://m6avar.renlab.org), a comprehensive database of m6A-associated variants that potentially influence m6A modification, which will help to interpret variants by m6A function. The m6A-associated variants were derived from three different m6A sources including miCLIP/PA-m6A-seq experiments (high confidence), MeRIP-Seq experiments (medium confidence) and transcriptome-wide predictions (low confidence). Currently, m6AVar contains 16 132 high, 71 321 medium and 326 915 low confidence level m6A-associated variants. We also integrated the RBP-binding regions, miRNA-targets and splicing sites associated with variants to help users investigate the effect of m6A-associated variants on post-transcriptional regulation. Because it integrates the data from genome-wide association studies (GWAS) and ClinVar, m6AVar is also a useful resource for investigating the relationship between the m6A-associated variants and disease. Overall, m6AVar will serve as a useful resource for annotating variants and identifying disease-causing variants.


Subject(s)
Adenosine/analogs & derivatives , Databases, Nucleic Acid , RNA/genetics , RNA/metabolism , Adenosine/metabolism , Animals , Genetic Variation , Genome-Wide Association Study , Humans , Internet , Mice , Molecular Sequence Annotation , Polymorphism, Single Nucleotide , RNA Processing, Post-Transcriptional , RNA-Binding Proteins/metabolism , User-Computer Interface
20.
Sci Rep ; 6: 28249, 2016 06 16.
Article in English | MEDLINE | ID: mdl-27306108

ABSTRACT

As one of the most common post-translational modifications in eukaryotic cells, lipid modification is an important mechanism for the regulation of variety aspects of protein function. Over the last decades, three classes of lipid modifications have been increasingly studied. The co-regulation of these different lipid modifications is beginning to be noticed. However, due to the lack of integrated bioinformatics resources, the studies of co-regulatory mechanisms are still very limited. In this work, we developed a tool called GPS-Lipid for the prediction of four classes of lipid modifications by integrating the Particle Swarm Optimization with an aging leader and challengers (ALC-PSO) algorithm. GPS-Lipid was proven to be evidently superior to other similar tools. To facilitate the research of lipid modification, we hosted a publicly available web server at http://lipid.biocuckoo.org with not only the implementation of GPS-Lipid, but also an integrative database and visualization tool. We performed a systematic analysis of the co-regulatory mechanism between different lipid modifications with GPS-Lipid. The results demonstrated that the proximal dual-lipid modifications among palmitoylation, myristoylation and prenylation are key mechanism for regulating various protein functions. In conclusion, GPS-lipid is expected to serve as useful resource for the research on lipid modifications, especially on their co-regulation.


Subject(s)
Lipid Metabolism , Proteins/metabolism , Algorithms , Animals , Databases, Factual , Humans , Protein Processing, Post-Translational
SELECTION OF CITATIONS
SEARCH DETAIL