Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
Lupus ; 33(6): 587-597, 2024 May.
Article in English | MEDLINE | ID: mdl-38506324

ABSTRACT

OBJECTIVE: Human gamma-delta T cells (γδ-T cells) play crucial roles in both innate and adaptive immune responses. However, much less is known about the immune status of γδT cells in systemic lupus erythematosus (SLE) patients. The objective of this study was to explore potential relationships between the frequency of γδ-T-cell subpopulations and disease activity, autoantibody titres and renal involvement in patients with SLE. METHODS: Circulating γδ-T cells and their subsets (Vδ1+ T cells, Vδ2+ T cells and γδ-T-cell subpopulations defined by expression of surface receptors, including NKG2D, NKp30, NKp46 and PD-1), were identified via flow cytometry. Sixty active SLE patients were selected, including 41 new-onset and 19 relapsing cases. One hundred healthy controls (HCs) were enrolled as the control group. Percentages of these cell subsets in SLE patients and HCs and their relationships with disease activity were analysed. Twenty-two of the 41 new-onset SLE patients were assessed before and after treatment. Changes in the frequencies of these cell subsets and their relationships with renal involvement were also analysed. RESULTS: Compared with that in HCs, the percentage of total γδ-T cells among CD3+ T cells in SLE patients was significantly lower. An imbalance in the proportions of Vδ1+ and Vδ2+ T cells among γδ-T cells was observed. The proportion of Vδ1+ T cells among γδ-T cells was significantly greater in SLE patients than in HCs, while the proportion of Vδ2+ T cells was significantly lower. Expression levels of PD-1, NKG2D, NKp30 and NKp46 in Vδ1+ T cells and Vδ2+ T cells from SLE patients were generally significantly increased, except for expression of NKG2D in Vδ2+ T cells. Moreover, Vδ2+ T cells, Vδ1+ T cells and Vδ1+PD-1+ T cells were associated with disease activity, and an increase in Vδ2+ T-cell frequency and a decrease in PD-1 expression by γδ-T cells might be associated with effective treatment. Interestingly, our results indicated that Vδ2+ T cells and their Vδ2+NKp30+ T-cell subpopulation might be associated with renal involvement in SLE. CONCLUSION: A broad range of anomalies in the proportions of γδ-T-cell subsets and γδ-T cells in SLE patients may be involved in the pathogenesis of SLE. There is a strong association between Vδ2+ T cells and their Vδ2+NKp30+ T-cell subpopulation and LN occurrence. Our results indicate that γδ-T cells and their subpopulations might be key players in disease immunopathology and renal involvement in SLE.


Subject(s)
Lupus Erythematosus, Systemic , Receptors, Antigen, T-Cell, gamma-delta , Humans , Receptors, Antigen, T-Cell, gamma-delta/metabolism , NK Cell Lectin-Like Receptor Subfamily K/metabolism , Programmed Cell Death 1 Receptor/metabolism , T-Lymphocyte Subsets , Phenotype
2.
Int J Biol Macromol ; 259(Pt 2): 129280, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38211911

ABSTRACT

The retrogradation of wheat amylopectin during cold storage is the main reason for the increasing hardness of flour products such as steamed bread, bread and pastries, etc. Addition of gluten protein components is a green, safe, cheap and efficient method to inhibit the retrogradation of wheat amylopectin. In this paper, as being stored at 4 °C for 7 d, retrogradation rate of wheat amylopectin decreased from 55.02 % to 14.37 % after it was mixed with 20 % alkali-soluble glutenin (ASG) at 30 °C for 90 min, a 73.8 % reduction. The infrared results showed that the intensity of bending vibration of water molecules and intra-molecular ß-sheet content of ASG decreased during the interaction between amylopectin and ASG. Meanwhile, intermolecular ß-sheet and random coil contents of ASG increased. The results of 13C Solid-state NMR indicated that Qß, Pγ and Lγ of ASG involved in interaction of wheat amylopectin, ASG and molecule of water. Under the optimal conditions, the interaction of wheat amylopectin and ASG began to form spheres containing disulfide bonds, resulting in the attenuation or disappearance of the diffraction peak at 2θ 19.7°, which may be marked as the criterion for the best mixing time of wheat amylopectin and ASG. The retrogradation kinetic index (n) of wheat amylopectin decreased significantly with the addition of ASG and formation of disulfide bond was the key factor. ASG could be potentially used as an anti-retrogradation agent for amylopectin.


Subject(s)
Amylopectin , Starch , Amylopectin/chemistry , Starch/chemistry , Triticum/chemistry , Glutens/chemistry , Water/chemistry , Disulfides , Bread
3.
Sci Rep ; 13(1): 22724, 2023 12 20.
Article in English | MEDLINE | ID: mdl-38123593

ABSTRACT

This research proposed to retrospectively analyze 20 years of clinical data and investigate the relationship between demographic factors and syncopal symptom in pediatric vasovagal syncope. A total of 2513 children, 1124 males and 1389 females, age range 3-18 years, who presented to Department of Pediatric Cardiovasology, Children's Medical Center, The Second Xiangya Hospital, Central South University with unexplained syncope or pre-syncope and were diagnosed with vasovagal syncope were retrospectively collected and divided into syncope group (n = 1262) and pre-syncope group (n = 1251). (1) Females had a 36% increased risk of syncope compared to males, a 27% increased risk of syncope for every 1-year increase in age, and a 2% decreased risk of syncope for every 1 cm increase in height. (2) A non-linear relationship between age, height, weight and syncope was observed. When age > 10.67 years, the risk of syncope increases by 45% for each 1-year increase in age; when height < 146 cm, the risk of syncope decreases by 4% for each 1 cm increase in height; when weight < 28.5 kg, the risk of syncope decreases by 10% for each 1 kg increase in weight. Demographic factors are strongly associated with syncopal symptom in pediatric vasovagal syncope and can help to predict the risk.


Subject(s)
Syncope, Vasovagal , Male , Female , Humans , Child , Child, Preschool , Adolescent , Syncope, Vasovagal/diagnosis , Retrospective Studies , Syncope/diagnosis , Tilt-Table Test/adverse effects , Demography
4.
Medicine (Baltimore) ; 102(36): e34665, 2023 Sep 08.
Article in English | MEDLINE | ID: mdl-37682186

ABSTRACT

Flavonoids have been shown to be beneficial in a variety of inflammatory and metabolic diseases because of their anti-inflammatory and antioxidant properties. However, previous epidemiological studies have only demonstrated a negative correlation between flavonoid intake on inflammatory markers, and the optimal intake of dietary flavonoids and subclasses in terms of dietary anti-inflammatory efficacy remains undetermined. This study was based on 3 cycles (2007-2010, 2017-2018) of the National Health and Nutrition Examination Survey and the corresponding expanded flavonoid database. Weighted multiple linear regression was used to assess linear relationships between flavonoid intake and Dietary inflammation index (DII). Smoothed curve fit and a generalized additive model were used to investigate the nonlinear relationships and threshold effects, the 2-tailed linear regression model was used to find potential inflection points. A total of 12,724 adults were included in the study. After adjusting for potential confounders, flavonoid intake was significantly associated with DII, with the strongest negative association effect for flavonols (-0.40 [-0.45, -0.35]). In subgroup analyses stratified by sex, race, age, body mass index, education levels, and diabetes, flavonol intake maintained a significant negative linear correlation with DII. In addition, we found significant nonlinear relationships (L-shaped relationships) and threshold effects between total flavonoids, flavan-3-ols, and flavanols and DII, with inflection points of 437.65 mg/days, 157.79 mg/days, and 46.36 mg/days, respectively. Our results suggest a threshold for the dietary anti-inflammatory capacity of flavonoid intake in U.S. adults.


Subject(s)
Flavonoids , Polyphenols , Adult , Humans , Nutrition Surveys , Antioxidants , Body Mass Index , Inflammation
5.
Cell Chem Biol ; 30(6): 618-631.e12, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37290440

ABSTRACT

Recurrent JAK2 alterations are observed in myeloproliferative neoplasms, B-cell acute lymphoblastic leukemia, and other hematologic malignancies. Currently available type I JAK2 inhibitors have limited activity in these diseases. Preclinical data support the improved efficacy of type II JAK2 inhibitors, which lock the kinase in the inactive conformation. By screening small molecule libraries, we identified a lead compound with JAK2 selectivity. We highlight analogs with on-target biochemical and cellular activity and demonstrate in vivo activity using a mouse model of polycythemia vera. We present a co-crystal structure that confirms the type II binding mode of our compounds with the "DFG-out" conformation of the JAK2 activation loop. Finally, we identify a JAK2 G993A mutation that confers resistance to the type II JAK2 inhibitor CHZ868 but not to our analogs. These data provide a template for identifying novel type II kinase inhibitors and inform further development of agents targeting JAK2 that overcome resistance.


Subject(s)
Myeloproliferative Disorders , Humans , Mutation , Myeloproliferative Disorders/genetics , Janus Kinase 2/genetics , Janus Kinase 2/metabolism
6.
J Med Chem ; 66(5): 3356-3371, 2023 03 09.
Article in English | MEDLINE | ID: mdl-36826833

ABSTRACT

The c-Jun N-terminal kinases (JNKs) are members of the mitogen-activated protein kinase (MAPK) family, which includes JNK1-JNK3. Interestingly, JNK1 and JNK2 show opposing functions, with JNK2 activity favoring cell survival and JNK1 stimulating apoptosis. Isoform-selective small molecule inhibitors of JNK1 or JNK2 would be useful as pharmacological probes but have been difficult to develop due to the similarity of their ATP binding pockets. Here, we describe the discovery of a covalent inhibitor YL5084, the first such inhibitor that displays selectivity for JNK2 over JNK1. We demonstrated that YL5084 forms a covalent bond with Cys116 of JNK2, exhibits a 20-fold higher Kinact/KI compared to that of JNK1, and engages JNK2 in cells. However, YL5084 exhibited JNK2-independent antiproliferative effects in multiple myeloma cells, suggesting the existence of additional targets relevant in this context. Thus, although not fully optimized, YL5084 represents a useful chemical starting point for the future development of JNK2-selective chemical probes.


Subject(s)
JNK Mitogen-Activated Protein Kinases , Mitogen-Activated Protein Kinase 9 , Mitogen-Activated Protein Kinase 8/metabolism , Mitogen-Activated Protein Kinase 9/metabolism , Mitogen-Activated Protein Kinases/metabolism , Phosphorylation
7.
Elife ; 112022 10 27.
Article in English | MEDLINE | ID: mdl-36300789

ABSTRACT

The transcription factor TEAD, together with its coactivator YAP/TAZ, is a key transcriptional modulator of the Hippo pathway. Activation of TEAD transcription by YAP has been implicated in a number of malignancies, and this complex represents a promising target for drug discovery. However, both YAP and its extensive binding interfaces to TEAD have been difficult to address using small molecules, mainly due to a lack of druggable pockets. TEAD is post-translationally modified by palmitoylation that targets a conserved cysteine at a central pocket, which provides an opportunity to develop cysteine-directed covalent small molecules for TEAD inhibition. Here, we employed covalent fragment screening approach followed by structure-based design to develop an irreversible TEAD inhibitor MYF-03-69. Using a range of in vitro and cell-based assays we demonstrated that through a covalent binding with TEAD palmitate pocket, MYF-03-69 disrupts YAP-TEAD association, suppresses TEAD transcriptional activity and inhibits cell growth of Hippo signaling defective malignant pleural mesothelioma (MPM). Further, a cell viability screening with a panel of 903 cancer cell lines indicated a high correlation between TEAD-YAP dependency and the sensitivity to MYF-03-69. Transcription profiling identified the upregulation of proapoptotic BMF gene in cancer cells that are sensitive to TEAD inhibition. Further optimization of MYF-03-69 led to an in vivo compatible compound MYF-03-176, which shows strong antitumor efficacy in MPM mouse xenograft model via oral administration. Taken together, we disclosed a story of the development of covalent TEAD inhibitors and its high therapeutic potential for clinic treatment for the cancers that are driven by TEAD-YAP alteration.


Subject(s)
Cysteine , Hippo Signaling Pathway , Humans , Animals , Mice , Research Design , Transcriptional Activation , Transplantation, Heterologous
8.
Cell Chem Biol ; 29(10): 1470-1481.e31, 2022 10 20.
Article in English | MEDLINE | ID: mdl-36070758

ABSTRACT

Targeted protein degradation (TPD) uses small molecules to recruit E3 ubiquitin ligases into the proximity of proteins of interest, inducing ubiquitination-dependent degradation. A major bottleneck in the TPD field is the lack of accessible E3 ligase ligands for developing degraders. To expand the E3 ligase toolbox, we sought to convert the Kelch-like ECH-associated protein 1 (KEAP1) inhibitor KI696 into a recruitment handle for several targets. While we were able to generate KEAP1-recruiting degraders of BET family and murine focal adhesion kinase (FAK), we discovered that the target scope of KEAP1 was narrow, as targets easily degraded using a cereblon (CRBN)-recruiting degrader were refractory to KEAP1-mediated degradation. Linking the KEAP1-binding ligand to a CRBN-binding ligand resulted in a molecule that induced degradation of KEAP1 but not CRBN. In sum, we characterize tool compounds to explore KEAP1-mediated ubiquitination and delineate the challenges of exploiting new E3 ligases for generating bivalent degraders.


Subject(s)
NF-E2-Related Factor 2 , Ubiquitin-Protein Ligases , Mice , Animals , Ubiquitin-Protein Ligases/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Ligands , NF-E2-Related Factor 2/metabolism , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Ubiquitins/metabolism
9.
Int J Biol Macromol ; 219: 508-518, 2022 Oct 31.
Article in English | MEDLINE | ID: mdl-35940430

ABSTRACT

Long-term retrogradation of amylopectin always leads to the quality deterioration of starch-based food. In this paper, the purified maize amylopectin was co-crystallized with NaCl to obtain anti-retrograded amylopectin. The results showed that the retrogradation rate of maize amylopectin dropped directly from 27.92 % to 19.05 % at the conditions of amylopectin: 5 % NaCl (m/v) = 1.7:10, eutectic times 24 h at 4 °C. The co-crystals with a dendritic shape consisted of a center and several large branches and the length of the largest branch reached up to 10,000 µm. The results of the maximum absorbance of iodine-attached amylopectin, molecular weight and chain length distributions showed that hydrolysis and graft of amylopectin happened in the eutectic process. Residues produced by acid hydrolysis linked to the main chains via α-1,6 glycosidic linkage at the late stage of eutectic reaction. The marked signs for single helix of maize amylopectin with Mw >20 × 105 g/mol were the enhancement of weak resonance at 100.0 ppm (104.1, 100.0, 94.6, 82.9 ppm). Single-helix maize amylopectin was more likely to form sharp X-ray diffraction during being dried without gelatinization. The possible mechanism for anti-retrogradation of maize amylopectin by co-crystal treatment was deduced. Co-crystallization with NaCl to produce single-helix amylopectin was a promising strategy to prepare anti-retrogradation amylopectin.


Subject(s)
Amylopectin , Iodine , Amylopectin/chemistry , Amylose/chemistry , Calorimetry, Differential Scanning , Sodium Chloride , Starch/chemistry , Zea mays/chemistry
10.
Lupus Sci Med ; 9(1)2022 06.
Article in English | MEDLINE | ID: mdl-35732344

ABSTRACT

OBJECTIVE: T cells display significant phenotypical changes and play multiple roles in promoting the immune response in SLE. The frequencies of T cell subpopulations in SLE are still not well understood. To better understanding the phenotypic abnormalities of T cells in SLE will help us to clarify disease immunopathology and to find promising biomarkers for disease monitoring and control. METHODS: Peripheral blood CD4+ and CD8+ T cells and their subsets were determined by flow cytometry. Forty-one active SLE patients were selected, including 28 new-onset patients and 13 relapsing patients. One hundred healthy controls (HCs) were enrolled as the control group. The percentages of these cell subsets between patients with SLE and HCs and their relationships with disease activity and autoantibody titers were analysed. Thirteen of 28 new-onset SLE patients were assessed before and after treatment. The changes in the frequencies of these cell subsets and their relationships with renal response were analysed. RESULTS: There was a broad range of anomalies in the proportion of T cell subsets in patients with SLE compared with that of the HCs. Compared with the HCs, a higher frequency of memory T cells and a lower frequency of naïve T cells were noted in patients with SLE. In addition, an imbalance of CD28+ and CD28- cells in CD4+ T cells was observed in patients with SLE. We found that the expanded CD4+CD28- T cells did not decrease after treatment in patients who had impaired renal responses. It was very interesting to exhibit a negative correlation in the frequency between the CD4+CD28- T cells and T regulatory (Treg) cells and a positive correlation between the frequency of CD4+CD28+ T cells and Treg cells in this study. Increased CD8+HLADR+ T cell and CD8+CD38+HLADR+ T cell counts were observed in patients with SLE, suggesting an impaired cytotoxic capacity of CD8+ T cells in SLE. Additionally, we found that CD8+CD38+HLADR+ T cells were closely associated with disease activity, autoantibody titres and renal prognosis. CD4+ CXCR5-PD1+ T cells were expanded in patients with SLE in this study and were associated with disease activity in SLE. Th1 (T helper type 1) cells and Treg cells were decreased, but frequencies of T follicular helper (Tfh) cells, Th2 cells, Th17 cells and Tfh17 cells were increased. A strong correlation between Th17 cells and Tregs with renal involvement was observed in this study. CONCLUSION: The proportions of CD4+CD28- T cells, CD4+CXCR5-PD1+ T cells, CD8+HLADR+ T cells and CD8+CD38+HLADR+ T cells increased in patients with SLE and could be associated with disease activity and renal prognosis.


Subject(s)
CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , Lupus Erythematosus, Systemic , CD28 Antigens/metabolism , CD4-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/cytology , Humans , Lupus Erythematosus, Systemic/immunology , T-Lymphocyte Subsets , T-Lymphocytes, Regulatory/cytology
11.
Clin Rheumatol ; 41(8): 2309-2317, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35522353

ABSTRACT

To evaluate the association of inflammatory markers and depression in RA patients and the risk factors in RA with depression, a cross-sectional study was conducted in a cohort of RA patients from southern China.Two hundred-fifteen RA patients were enrolled. The demographic and disease-related characteristics were recorded and inflammatory markers in sera were measured. RA patients were guided to fill out PHQ-9 scale by themselves, the psychological state was evaluated by psychiatry experts and graded according to the HAMD-17 scale. The consistency of the two scales in judging depression was evaluated. RA with depression group had HAMD-17 scores greater than 7. The levels of CRP, ESR, fibrinogen, SAA, IL-2, IL-6, TNF-α, IFN-γ, IL-4, and IL-10 were measured and compared. Logistic regression analysis was performed to find the risk factors of RA with different depression levels. One hundred-five (48.84%) RA patients had HAMD-17 scores greater than 7. High consistency was found between HAMD-17 and PHQ-9 in predicting depression. RA patients with depression were more likely to have tender joints, lower income, no employment, higher disease activity, joint deformities and glucocorticoid treatment. The depressed RA patients had higher serum levels of IL-6, CRP, fibrinogen, and SAA. IL-6, CRP, fibrinogen, and SAA were positive correlated with depression in RA patients. PHQ-9 can replace HAMD-17 in clinical application to judge depression.


Subject(s)
Arthritis, Rheumatoid , Arthritis, Rheumatoid/drug therapy , Biomarkers , C-Reactive Protein/analysis , Cross-Sectional Studies , Depression/diagnosis , Fibrinogen/analysis , Humans , Interleukin-6 , Risk Factors
12.
RSC Med Chem ; 12(8): 1381-1390, 2021 Aug 18.
Article in English | MEDLINE | ID: mdl-34458741

ABSTRACT

Targeted protein degradation represents a rapidly growing area in drug discovery and development. Moreover, small molecules that induce the targeted degradation of a given protein also represent an important addition to the chemical probes toolbox as these compounds can achieve selective protein knockdown, thus providing an approach that is orthogonal to genetic knockdowns. In order to develop degradation-inducing chemical probes for studying cereblon (CRBN) biology, we generated six CRBN-CRBN (homo-PROTAC) degraders and six CRBN-VHL (hetero-PROTAC) degraders. From these compounds we identified two potent and selective CRBN degraders (ZXH-4-130 and ZXH-4-137), both of which are CRBN-VHL compounds. We characterized these lead degraders by quantitative proteomics in five cell lines (MM1.S, Kelly, SK-N-DZ, HEK293T, and MOLT-4) and observed high selectivity for CRBN in all cell lines. Furthermore, we directly compared our compounds to current lead CRBN degraders and demonstrated how these probes can be used as chemical knockdown reagents for studying CRBN-dependent processes. Overall, our work provides a roadmap for thorough degrader characterization by combination western and proteomic analysis, as illustrated by the identification of ZXH-4-130 and ZXH-4-137 as CRBN-knockdown tool compounds suitable for cell-based studies.

13.
Materials (Basel) ; 14(12)2021 Jun 18.
Article in English | MEDLINE | ID: mdl-34207465

ABSTRACT

The fatigue behaviors of metals are different under different in-service environment and loading conditions. This study was devoted to investigating the combined effects of high and low cycle fatigue loads on the performance of the low alloy steel Q345. Three kinds of experiments were carried out, including the pure high cycle fatigue (HCF) tests, the pure low cycle fatigue (LCF) tests, and the combined high and low cycle fatigue (HLCF) tests. The prediction formulae were proposed for the combined high and low cycle fatigue failure. Scanning electron microscopy (SEM) and stereo microscope were used to analyze the microstructure and fracture morphology due to different fatigue loads. Case study on the combined high and low cycle fatigue damage of a steel arch bridge was carried out based on the FE method and the proposed formula. The results show that the LCF life decreases evidently due to the prior HCF damages. The HLCF fracture surface is relatively flat near the crack initiation side, and rugged at the other half part. The fatigue damages at the bridge joints increase significantly with consideration of the pre-fatigue damages caused by traffic load. In the 100th anniversary of service, the fatigue damage index without considering the HCF pre-damage is only about 50% of the coupled damage value.

14.
Shock ; 56(6): 1066-1079, 2021 12 01.
Article in English | MEDLINE | ID: mdl-33988537

ABSTRACT

OBJECTIVES: To explore the role of LPS binding protein (LBP) in metabolism and optimize sepsis treatment. DESIGN: A sepsis model was established by injecting LPS into LBP-/- rats and WT rats and observing changes in the liver over time (0, 1, 6, and 24 h). SETTING: Detecting liver inflammation and injury. Optimizing the treatment of sepsis. SUBJECTS: WT rats and LBP-/- rats. INTERVENTIONS: We established a sepsis model by injecting LPS intravenously. MEASUREMENTS AND MAIN RESULTS: First, we induced sepsis in WT and LBP-/- rats with LPS. The rats were sacrificed, and serum and liver samples were collected at 1, 6, and 24 h after LPS injection. We found that the deletion of LBP reduced LPS-induced liver inflammation and injury at 1 and 6 h. Ballooning degeneration was clearly present in LBP-/- rat livers at 24 h after LPS injection. We found that mitochondrial damage and reactive oxygen species (ROS) levels were higher in LBP-/- rat livers than in WT rat livers at 24 h after LPS injection. According to the transcriptomic results, the peroxisome proliferator-activated receptor (PPAR) pathway may be the reason for lesions in LBP-/- rats. To further investigate the function of PPARα in sepsis, we inhibited mTOR with rapamycin and examined mitochondrial injury and ROS levels. The levels of mitochondrial damage and ROS were reduced after LBP-/- rats were pretreated with rapamycin in the context of LPS-induced sepsis. Inhibiting CYP4a2, one of the PPARα-target gene products, reduced the level of LPS-induced ROS in LBP-/- rats. CONCLUSION: LBP protects hepatic mitochondria against LPS-induced damage via the LBP-PPARα-CYP4a2 signaling pathway.


Subject(s)
Acute-Phase Proteins/physiology , Carrier Proteins/physiology , Cytochrome P-450 Enzyme System/physiology , Membrane Glycoproteins/physiology , Mitochondria, Liver/metabolism , Peroxisome Proliferator-Activated Receptors/physiology , Sepsis/metabolism , Signal Transduction/physiology , Animals , Disease Models, Animal , Rats
15.
J Immunol Res ; 2021: 8356645, 2021.
Article in English | MEDLINE | ID: mdl-35005033

ABSTRACT

Sepsis is an organ dysfunction caused by the dysregulated inflammatory response to infection. Lipopolysaccharide-binding protein (LBP) binds to lipopolysaccharide (LPS) and modulates the inflammatory response. A rare systematic study has been reported to detect the effect of LBP gene during LPS-induced sepsis. Herein, we explored the RNA sequencing technology to profile the transcriptomic changes in liver tissue between LBP-deficient rats and WT rats at multiple time points after LPS administration. We proceeded RNA sequencing of liver tissue to search differentially expressed genes (DEGs) and enriched biological processes and pathways between WT and LBP-deficient groups at 0 h, 6 h, and 24 h. In total, 168, 284, and 307 DEGs were identified at 0 h, 6 h, and 24 h, respectively, including Lrp5, Cyp7a1, Nfkbiz, Sigmar1, Fabp7, and Hao1, which are related to the inflammatory or lipid-related process. Functional enrichment analysis revealed that inflammatory response to LPS mediated by Ifng, Cxcl10, Serpine1, and Lbp was enhanced at 6 h, while lipid-related metabolism associated with C5, Cyp4a1, and Eci1 was enriched at 24 h after LPS administration in the WT samples. The inflammatory process was not found when the LBP gene was knocked out; lipid-related metabolic process and peroxisome proliferator-activated receptor (PPAR) signaling pathway mediated by Dhrs7b and Tysnd1 were significantly activated in LBP-deficient samples. Our study suggested that the invading LPS may interplay with LBP to activate the nuclear factor kappa B (NF-κB) signaling pathway and trigger uncontrolled inflammatory response. However, when inhibiting the activity of NF-κB, lipid-related metabolism would make bacteria removal via the effect on the PPAR signaling pathway in the absence of LBP gene. We also compared the serum lactate dehydrogenase (LDH) and alkaline phosphatase (ALP) levels using the biochemistry analyzer and analyzed the expression of high mobility group box 1 (HMGB1) and cleaved-caspase 3 with immunohistochemistry, which further validated our conclusion.


Subject(s)
Acute-Phase Proteins/metabolism , Carrier Proteins/metabolism , Liver Diseases/immunology , Liver/physiology , Membrane Glycoproteins/metabolism , Sepsis/immunology , Acute-Phase Proteins/genetics , Animals , Carrier Proteins/genetics , Gene Expression Regulation , Gene Knockout Techniques , Humans , Inflammation/genetics , Lipid Metabolism/genetics , Lipopolysaccharides/immunology , Liver Diseases/genetics , Male , Membrane Glycoproteins/genetics , RNA Interference , Rats , Rats, Sprague-Dawley , Sepsis/genetics
17.
Front Plant Sci ; 11: 571157, 2020.
Article in English | MEDLINE | ID: mdl-33042188

ABSTRACT

Lead-zinc (Pb-Zn) mine tailings pose a great risk to the natural environment and human health because of their high toxicity. In this study, the responses of photosynthesis, chlorophyll fluorescence, and antioxidative enzyme of Melia azedarach and Ligustrum lucidum in the soil contaminated by Pb-Zn mine tailings were investigated. Results showed that Pb-Zn mine tailings significantly reduced net photosynthetic rates and leaf photosynthetic pigment content of both trees, and the reduction of net photosynthetic rates was mainly caused by their biochemical limitation (BL). The chlorophyll fluorescence parameters from Pb-Zn tailing stressed leaves indicated that Pb-Zn tailings affected PSII activity which was evident from the change values of energy fluxes per reaction center (RC): probability that an electron moves further than QA - (ETO/TRO), maximum quantum yield for primary photochemistry (TRO/ABS), the density of PSII RC per excited cross-section (RC/CSO), the absorption of antenna chlorophylls per PSII RC (ABS/RC), and the turnover number of QA reduction events (N). Pb-Zn mine tailings also affected the oxidation and reduction of PSI, which resulted in a great increase of reactive oxygen species (ROS) contents and then stimulated the rate of lipid peroxidation. Both trees exhibited certain antioxidative defense mechanisms as elevated superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) activities, then declined under high level of Pb-Zn tailing treatment. Comparatively, L. lucidum showed less extent effect on photosynthesis and higher antioxidative enzyme activities than M. azedarach; thus L. lucidum was more tolerant than M. azedarach at least under the described Pb-Zn tailing treatment. These results indicate that the effect of Pb-Zn mine tailings on photosynthesis performance mainly related to imbalance of the PSII activity and PSI redox state in both trees. We propose that M. azedarach and L. lucidum could relieve the oxidative stress for phytoremediation under the appropriate Pb-Zn mine tailing content.

18.
Cell Chem Biol ; 27(12): 1553-1560.e8, 2020 12 17.
Article in English | MEDLINE | ID: mdl-32916088

ABSTRACT

MKK4/7 are kinases that phosphorylate JNKs and regulate the MAPK signaling pathway. Their overexpression has been associated with tumorigenesis and aggressiveness in cancers such as breast, prostate, non-small cell lung, and pediatric leukemia, making them a potential target for inhibitor development. Here, we report the discovery, development, and validation of a dual MKK4/7 inhibitor, BSJ-04-122, that covalently targets a conserved cysteine located before the DFG motif and displays excellent kinome selectivity. BSJ-04-122 exhibits potent cellular target engagement and induces robust target-specific downstream effects. The combination of the dual MKK4/7 inhibitor with a selective, covalent JNK inhibitor demonstrated an enhanced antiproliferative activity against triple-negative breast cancer cells. Taken together, the results show that BSJ-04-122 represents a pharmacological probe for MKK4/7 and credential covalent targeting as a way to explore the therapeutic potential of these kinases.


Subject(s)
Drug Design , MAP Kinase Kinase 4/antagonists & inhibitors , MAP Kinase Kinase 7/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Amino Acid Motifs , Cell Line, Tumor , Cell Proliferation/drug effects , Humans , MAP Kinase Kinase 4/chemistry , MAP Kinase Kinase 7/chemistry , Models, Molecular
19.
ACS Chem Biol ; 15(10): 2722-2730, 2020 10 16.
Article in English | MEDLINE | ID: mdl-32865967

ABSTRACT

Cereblon (CRBN) is an E3 ligase adapter protein that can be reprogrammed by imide-class compounds such as thalidomide, lenalidomide, and pomalidomide to induce the degradation of neo-substrate proteins. In order to identify additional small molecule CRBN modulators, we implemented a focused combinatorial library approach where we fused an imide-based CRBN-binding pharmacophore to a heterocyclic scaffold, which could be further elaborated. We screened the library for CRBN-dependent antiproliferative activity in the multiple myeloma cell line MM1.S and identified five hit compounds. Quantitative chemical proteomics of hit compounds revealed that they induced selective degradation of GSPT1, a translation termination factor that is currently being explored as a therapeutic target for the treatment of acute myeloid leukemia. Molecular docking studies with CRBN and GSPT1 followed by analogue synthesis identified a possible hydrogen bond interaction with the central pyrimidine ring as a molecular determinant of hit compounds' selectivity. This study demonstrates that a focused combinatorial library design, phenotypic screening, and chemical proteomics can provide a suitable workflow to efficiently identify novel CRBN modulators.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Peptide Termination Factors/metabolism , Proteolysis/drug effects , Small Molecule Libraries/pharmacology , Thalidomide/analogs & derivatives , Thalidomide/pharmacology , Ubiquitin-Protein Ligases/metabolism , Adaptor Proteins, Signal Transducing/chemistry , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Humans , Hydrogen Bonding , Molecular Docking Simulation , Peptide Termination Factors/chemistry , Protein Binding , Small Molecule Libraries/metabolism , Thalidomide/metabolism , Ubiquitin-Protein Ligases/chemistry
20.
J Med Chem ; 63(13): 6708-6726, 2020 07 09.
Article in English | MEDLINE | ID: mdl-32502343

ABSTRACT

Genetic depletion of cyclin-dependent kinase 12 (CDK12) or selective inhibition of an analog-sensitive CDK12 reduces DNA damage repair gene expression, but selective inhibition of endogenous CDK12 is difficult. Here, we report the development of MFH290, a novel cysteine (Cys)-directed covalent inhibitor of CDK12/13. MFH290 forms a covalent bond with Cys-1039 of CDK12, exhibits excellent kinome selectivity, inhibits the phosphorylation of serine-2 in the C-terminal domain (CTD) of RNA-polymerase II (Pol II), and reduces the expression of key DNA damage repair genes. Importantly, these effects were demonstrated to be CDK12-dependent as mutation of Cys-1039 rendered the kinase refractory to MFH290 and restored Pol II CTD phosphorylation and DNA damage repair gene expression. Consistent with its effect on DNA damage repair gene expression, MFH290 augments the antiproliferative effect of the PARP inhibitor olaparib.


Subject(s)
CDC2 Protein Kinase/antagonists & inhibitors , Cyclin-Dependent Kinases/antagonists & inhibitors , Drug Discovery , Protein Kinase Inhibitors/pharmacology , CDC2 Protein Kinase/chemistry , Cyclin-Dependent Kinases/chemistry , Humans , Jurkat Cells , Models, Molecular , Protein Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...