Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
iScience ; 27(5): 109695, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38680657

ABSTRACT

Electroacupuncture (EA) stimulation has been shown to be beneficial in stroke rehabilitation; however, little is known about the neurological mechanism by which this peripheral stimulation approach treats for stroke. This study showed that both pyramidal and parvalbumin (PV) neuronal activity increased in the contralesional primary motor cortex forelimb motor area (M1FL) after ischemic stroke induced by focal unilateral occlusion in the M1FL. EA stimulation reduced pyramidal neuronal activity and increased PV neuronal activity. These results were obtained by a combination of fiber photometry recordings, in vivo and in vitro electrophysiological recordings, and immunofluorescence. Moreover, EA was found to regulate the expression/function of N-methyl-D-aspartate receptors (NMDARs) altered by stroke pathology. In summary, our findings suggest that EA could restore disturbed neuronal activity through the regulation of the activity of pyramidal and PV neurons. Furthermore, NMDARs we shown to play an important role in EA-mediated improvements in sensorimotor ability during stroke rehabilitation.

2.
Tree Physiol ; 43(9): 1641-1652, 2023 09 06.
Article in English | MEDLINE | ID: mdl-37171622

ABSTRACT

Weeping forsythia is an important ornamental, ecological and medicinal plant. Brown leaf spots limit the large-scale production of weeping forsythia as a medicinal crop. Alternaria alternata is a pathogen causing brown leaf spots in weeping forsythia; however, its pathogenesis and the immune response mechanisms of weeping forsythia remain unclear. In this study, we identified two mechanisms based on morphological anatomy, physiological indexes and gene expression analyses. Our results showed that A. alternata induced leaf stomata to open, invaded the mesophyll, dissolved the cell wall, destroyed the cell membrane and decreased the number of chloroplasts by up-regulating the expression of auxin-activated signaling pathway genes. Alternaria alternata also down-regulated iron-ion homeostasis and binding-related genes, which caused an increase in the levels of iron ions and reactive oxygen species in leaves. These processes eventually led to programmed cell death, destroying palisade and spongy tissues and causing the formation of iron rust spots. Alternaria alternata also caused defense and hypersensitive responses in weeping forsythia through signaling pathways mediated by flg22-like and elf18-like polypeptides, ethylene, H2O2 and bacterial secretion systems. Our study provides a theoretical basis for the control of brown leaf spots in weeping forsythia.


Subject(s)
Forsythia , Hydrogen Peroxide , Transcriptome , Gene Expression Profiling
SELECTION OF CITATIONS
SEARCH DETAIL
...