Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
2.
Article in English | MEDLINE | ID: mdl-38649427

ABSTRACT

Behavioral and clinical studies have revealed a critical role of substance P (SP) in aggression; however, the neural circuit mechanisms underlying SP and aggression remain elusive. Here, we show that tachykinin-expressing neurons in the medial amygdala (MeATac1 neurons) are activated during aggressive behaviors in male mice. We identified MeATac1 neurons as a key mediator of aggression and found that MeATac1→ventrolateral part of the ventromedial hypothalamic nucleus (VMHvl) projections are critical to the regulation of aggression. Moreover, SP/neurokinin-1 receptor (NK-1R) signaling in the VMHvl modulates aggressive behaviors in male mice. SP/NK-1R signaling regulates aggression by influencing glutamate transmission in neurons in the VMHvl. In summary, these findings place SP as a key node in aggression circuits.

3.
Cell Mol Life Sci ; 81(1): 123, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38459149

ABSTRACT

Maintaining genomic stability is a prerequisite for proliferating NPCs to ensure genetic fidelity. Though histone arginine methylation has been shown to play important roles in safeguarding genomic stability, the underlying mechanism during brain development is not fully understood. Protein arginine N-methyltransferase 5 (PRMT5) is a type II protein arginine methyltransferase that plays a role in transcriptional regulation. Here, we identify PRMT5 as a key regulator of DNA repair in response to double-strand breaks (DSBs) during NPC proliferation. Prmt5F/F; Emx1-Cre (cKO-Emx1) mice show a distinctive microcephaly phenotype, with partial loss of the dorsal medial cerebral cortex and complete loss of the corpus callosum and hippocampus. This phenotype is resulted from DSBs accumulation in the medial dorsal cortex followed by cell apoptosis. Both RNA sequencing and in vitro DNA repair analyses reveal that PRMT5 is required for DNA homologous recombination (HR) repair. PRMT5 specifically catalyzes H3R2me2s in proliferating NPCs in the developing mouse brain to enhance HR-related gene expression during DNA repair. Finally, overexpression of BRCA1 significantly rescues DSBs accumulation and cell apoptosis in PRMT5-deficient NSCs. Taken together, our results show that PRMT5 maintains genomic stability by regulating histone arginine methylation in proliferating NPCs.


Subject(s)
Neural Stem Cells , Recombinational DNA Repair , Animals , Mice , Arginine/metabolism , DNA Repair , Genomic Instability , Genomics , Histones/genetics , Histones/metabolism , Neural Stem Cells/metabolism , Protein-Arginine N-Methyltransferases/genetics , Protein-Arginine N-Methyltransferases/metabolism
4.
Int Immunopharmacol ; 121: 110447, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37301121

ABSTRACT

BACKGROUND & AIM: Exosomes are effective mediators of cell-to-cell interactions and transport several regulatory molecules, including microRNAs (miRNAs), involved in diverse fundamental biological processes. The role of macrophage-derived exosomes in the development of inflammatory bowel disease (IBD) has not been previously reported. This study investigated specific miRNAs in macrophage-derived exosomes in IBD and their molecular mechanism. METHODS: A dextran sulfate sodium (DSS)-induced IBD mouse model was established. The culture supernatant of murine bone marrow-derived macrophages (BMDMs) cultured with or without lipopolysaccharide (LPS) was used for isolating exosomes, which were subjected to miRNA sequencing. Lentiviruses were used to alter miRNA expression and investigate the role of macrophage-derived exosomal miRNAs. Both mouse and human organoids were co-cultured with macrophages in a Transwell system to model cellular IBD in vitro. RESULTS: LPS-induced macrophages released exosomes containing various miRNAs and exacerbated IBD. Based on miRNA sequencing of macrophage-derived exosomes, miR-223 was selected for further analysis. Exosomes with upregulated miR-223 expression contributed to the exacerbation of intestinal barrier dysfunction in vivo, which was further verified using both mouse and human colon organoids. Furthermore, time-dependent analysis of the mRNAs in DSS-induced colitis mouse tissue and miR-223 target gene prediction were performed to select the candidate gene, resulting in the identification of the barrier-related factor Tmigd1. CONCLUSION: Macrophage-derived exosomal miR-223 has a novel role in the progression of DSS-induced colitis by inducing intestinal barrier dysfunction through the inhibition of TMIGD1.


Subject(s)
Colitis , Exosomes , Inflammatory Bowel Diseases , MicroRNAs , Humans , Mice , Animals , Exosomes/metabolism , Lipopolysaccharides/pharmacology , Inflammatory Bowel Diseases/metabolism , MicroRNAs/genetics , Colitis/chemically induced , Macrophages/metabolism , Membrane Glycoproteins/metabolism
5.
Endosc Ultrasound ; 12(1): 29-37, 2023.
Article in English | MEDLINE | ID: mdl-36861506

ABSTRACT

Disconnected pancreatic duct syndrome (DPDS) is an important and common complication of acute necrotizing pancreatitis. Endoscopic approach has been established as the first-line treatment for pancreatic fluid collections (PFCs) with less invasion and satisfactory outcome. However, the presence of DPDS significantly complicates the management of PFC; besides, there is no standardized treatment for DPDS. The diagnosis of DPDS presents the first step of management, which can be preliminarily established by imaging methods including contrast-enhanced computed tomography, ERCP, magnetic resonance cholangiopancreatography (MRCP), and EUS. Historically, ERCP is considered as the gold standard for the diagnosis of DPDS, and secretin-enhanced MRCP is recommended as an appropriate diagnostic method in existing guidelines. With the development of endoscopic techniques and accessories, the endoscopic approach, mainly including transpapillary and transmural drainage, has been developed as the preferred treatment over percutaneous drainage and surgery for the management of PFC with DPDS. Many studies concerning various endoscopic treatment strategies have been published, especially in the recent 5 years. Nonetheless, existing current literature has reported inconsistent and confusing results. In this article, the latest evidence is summarized to explore the optimal endoscopic management of PFC with DPDS.

6.
Int J Mol Sci ; 24(5)2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36901777

ABSTRACT

Neural circuits that control aversion are essential for motivational regulation and survival in animals. The nucleus accumbens (NAc) plays an important role in predicting aversive events and translating motivations into actions. However, the NAc circuits that mediate aversive behaviors remain elusive. Here, we report that tachykinin precursor 1 (Tac1) neurons in the NAc medial shell regulate avoidance responses to aversive stimuli. We show that NAcTac1 neurons project to the lateral hypothalamic area (LH) and that the NAcTac1→LH pathway contributes to avoidance responses. Moreover, the medial prefrontal cortex (mPFC) sends excitatory inputs to the NAc, and this circuit is involved in the regulation of avoidance responses to aversive stimuli. Overall, our study reveals a discrete NAc Tac1 circuit that senses aversive stimuli and drives avoidance behaviors.


Subject(s)
Neurons , Nucleus Accumbens , Animals , Avoidance Learning , Hypothalamic Area, Lateral , Motivation , Neural Pathways/physiology , Nucleus Accumbens/physiology
7.
Front Immunol ; 14: 1077041, 2023.
Article in English | MEDLINE | ID: mdl-36761761

ABSTRACT

Peptidylarginine deiminases (PADs) are the only enzyme class known to deiminate arginine residues into citrulline in proteins, a process known as citrullination. This is an important post-translational modification that functions in several physiological and pathological processes. Neutrophil extracellular traps (NETs) are generated by NETosis, a novel cell death in neutrophils and a double-edged sword in inflammation. Excessive activation of PADs and NETs is critically implicated in their transformation from a physiological to a pathological state. Herein, we review the physiological and pathological functions of PADs and NETs, in particular, the involvement of PAD2 and PAD4 in the digestive system, from inflammatory to oncological diseases, along with related therapeutic prospects.


Subject(s)
Extracellular Traps , Protein-Arginine Deiminases/genetics , Extracellular Traps/metabolism , Hydrolases/genetics , Citrullination , Digestive System/metabolism
8.
Cereb Cortex ; 33(8): 4977-4989, 2023 04 04.
Article in English | MEDLINE | ID: mdl-36227200

ABSTRACT

Autism is often comorbid with other psychiatric disorders. We have previously shown that Dip2a knockout (KO) induces autism-like behaviors in mice. However, the role of Dip2a in other psychiatric disorders remains unclear. In this paper, we revealed that Dip2a KO mice had comorbid anxiety. Dip2a KO led to a reduction in the dendritic length of cortical and hippocampal excitatory neurons. Molecular mechanism studies suggested that AMPK was overactivated and suppressed the mTOR cascade, contributing to defects in dendritic morphology. Deletion of Dip2a in adult-born hippocampal neurons (Dip2a conditional knockout (cKO)) increased susceptibility to anxiety upon acute stress exposure. Application of (2R,6R)-hydroxynorketamine (HNK), an inhibitor of mTOR, rescued anxiety-like behaviors in Dip2a KO and Dip2a cKO mice. In addition, 6 weeks of high-fat diet intake alleviated AMPK-mTOR signaling and attenuated the severity of anxiety in both Dip2a KO mice and Dip2a cKO mice. Taken together, these results reveal an unrecognized function of DIP2A in anxiety pathophysiology via regulation of AMPK-mTOR signaling.


Subject(s)
AMP-Activated Protein Kinases , Signal Transduction , Mice , Animals , Mice, Knockout , TOR Serine-Threonine Kinases/metabolism , Anxiety/genetics , Nuclear Proteins
9.
Cell Mol Gastroenterol Hepatol ; 14(6): 1257-1267, 2022.
Article in English | MEDLINE | ID: mdl-36089244

ABSTRACT

Neutrophils are the most abundant leukocyte population in the human circulatory system and are rapidly recruited to sites of inflammation. Neutrophils play a multifaceted role in intestinal inflammation, as they contribute to the elimination of invading pathogens. Recently, their role in epithelial restitution has been widely recognized; however, they are also associated with bystander tissue damage. The intestinal epithelium provides a physical barrier to prevent direct contact of luminal contents with subepithelial tissues, which is extremely important for the maintenance of intestinal homeostasis. Numerous studies have demonstrated that transepithelial migration of neutrophils is closely related to disease symptoms and disruption of crypt architecture in inflammatory bowel disease and experimental colitis. There has been growing interest in how neutrophils interact with the epithelium under inflammatory conditions. Most studies focus on the effects of neutrophils on intestinal epithelial cells; however, the effects of intestinal epithelial cells on neutrophils during intestinal inflammation need to be well-established. Based on these data, we have summarized recent articles on the role of neutrophil-epithelial interactions in intestinal inflammation, particularly highlighting the epithelium-derived molecular regulators that mediate neutrophil recruitment, transepithelial migration, and detachment from the epithelium, as well as the functional consequences of their crosstalk. A better understanding of these molecular events may help develop novel therapeutic targets for mitigating the deleterious effects of neutrophils in inflammatory bowel disease.


Subject(s)
Inflammatory Bowel Diseases , Neutrophils , Humans , Intestinal Mucosa , Epithelial Cells , Inflammation
10.
Water Res ; 220: 118677, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35667171

ABSTRACT

Despite ample evidence on spreading of e-waste derived hazardous materials, riverine transport of organic contaminants from e-waste recycling zones to surrounding areas has not been evaluated. To address this issue, passive and grab sampling methods were used to assess sediment-water diffusion and horizontal transport of polybrominated diphenyl ethers (PBDEs) and organophosphorus flame retardant (OPFRs) at upstream and downstream sites of two rivers in a typical e-waste recycling zone. Sediment acted as a source of BDE-17 with fluxes of 0.007-0.04 ng m-2 d-1 at all sampling sites. BDE-47 and BDE-99 reached equilibrium between overlying water and sediment porewater. Sediment interconverted from a sink at the upstream site to a source of OPFRs at the downstream site with a flux varying between -7.3 and 234 ng m-2 d-1. The amounts of OPFRs (11-45 g d-1) via horizontal riverine transport were greater than those of PBDEs (0.68-2 g d-1). The vertical sediment-water diffusion of PBDEs and OPFRs was not significant compared to horizontal riverine transport. The annual riverine outputs of PBDEs and OPFRs from the downstream sites were 250-330 g and 12,000-16,500 g, respectively, indicating the significance of riverine transport of organic contaminants from e-waste recycling zones to surrounding areas.


Subject(s)
Electronic Waste , Flame Retardants , China , Electronic Waste/analysis , Environmental Monitoring , Flame Retardants/analysis , Halogenated Diphenyl Ethers , Organophosphorus Compounds , Recycling , Water
14.
Environ Sci Process Impacts ; 24(2): 242-251, 2022 Feb 23.
Article in English | MEDLINE | ID: mdl-35015011

ABSTRACT

While organic-diffusive gradients in thin films (o-DGT) passive samplers have been used to assess organic contaminants in water, the effects of biofouling on accurate analyte quantification by o-DGT are poorly understood. We evaluated the effects of biofouling on the uptake of six common perfluoroalkyl substances (PFAS) using a previously developed polyacrylamide-WAX (weak anion exchange) o-DGT without a filter membrane. Linear uptake (R2 > 0.91) over 21 days was observed in fouled samplers. The measured sampling rates (Rs) and accumulated masses of PFAS in pre-fouled o-DGT were significantly lower (p < 0.05, 20-39% relative error) than in control-fouled samplers. However, compared to clean o-DGT (no biofouling), the Rs of most PFAS in control-fouled samplers (i.e., those with clean diffusive and binding gels initially) were not affected by biofouling. Under flowing (∼5.8 cm s-1) and static conditions, the measured diffusive boundary layer (DBL) thicknesses for clean o-DGT were 0.016 and 0.082 cm, respectively, whereas the effective in situ biofilm thicknesses for fouled o-DGT were 0.018 and 0.14 cm, respectively. These results suggest that biofilm growth does not have significant effects on target PFAS sampling by o-DGT under typical flowing conditions (≥2 cm s-1). However, rapid surface growth of biofilm on o-DGT deployed in quiescent waters over long periods of time may exacerbate the adverse effects of biofilms, necessitating the estimation of biofilm thickness in situ. This study provides new insights for evaluating the capability of o-DGT samplers when biofilm growth can be significant.


Subject(s)
Biofouling , Water Pollutants, Chemical , Diffusion , Environmental Monitoring/methods , Wastewater/analysis , Water Pollutants, Chemical/analysis
15.
Cell Death Discov ; 7(1): 377, 2021 Dec 07.
Article in English | MEDLINE | ID: mdl-34873177

ABSTRACT

Psychosocial stress is a vital factor contributing to the pathogenesis and progression of inflammatory bowel disease (IBD). The contribution of intestinal macrophage autophagy to the onset and development of IBD has been widely studied. Herein, we investigated the underlying mechanism of psychosocial stress in an IBD mouse model pertaining to macrophage autophagy. Corticotropin releasing hormone (CRH) was peripherally administrated to induce psychosocial stress. For in vivo studies, dextran sulfate sodium (DSS) was used for the creation of our IBD mouse model. For in vitro studies, lipopolysaccharide (LPS) was applied on murine bone marrow-derived macrophages (BMDMs) as a cellular IBD-related challenge. Chloroquine was applied to inhibit autophagy. We found that CRH aggravated the severity of DSS-induced IBD, increasing overall and local inflammatory reactions and infiltration. The levels of autophagy in intestinal macrophages and murine BMDMs were increased under these IBD-related inflammatory challenges and CRH further enhanced these effects. Subsequent administration of chloroquine markedly attenuated the detrimental effects of CRH on IBD severity and inflammatory reactions via inhibition of autophagy. These findings illustrate the effects of peripheral administration of CRH on DSS-induced IBD via the enhancement of intestinal macrophage autophagy, thus providing a novel understanding as well as therapeutic target for the treatment of IBD.

16.
Int J Mol Sci ; 22(9)2021 May 02.
Article in English | MEDLINE | ID: mdl-34063230

ABSTRACT

It has been reported that Netrin-1 is involved in neuroprotection following injury to the central nervous system. However, the minimal functional domain of Netrin-1 which can preserve the neuroprotection but avoid the major side effects of Netrin remains elusive. Here, we investigated the neuroprotective effect of a peptide E1 derived from Netrin-1's EGF3 domain (residues 407-422). We found that it interacts with deleted colorectal carcinoma (DCC) to activate focal adhesion kinase phosphorylation exhibiting neuroprotection. The administration of the peptide E1 was able to improve functional recovery through reduced apoptosis in an experimental murine model of intracerebral hemorrhage (ICH). In summary, we reveal a functional sequence of Netrin-1 that is involved in the recovery process after ICH and identify a candidate peptide for the treatment of ICH.


Subject(s)
Cell Death/drug effects , Cerebral Hemorrhage/drug therapy , Netrin-1/metabolism , Netrin-1/pharmacology , Neuroprotection/drug effects , Neuroprotective Agents/pharmacology , Animals , Apoptosis , Behavior, Animal , Cell Survival , DCC Receptor/genetics , Disease Models, Animal , Focal Adhesion Protein-Tyrosine Kinases , HEK293 Cells , Humans , Mice , Netrin-1/genetics
17.
Free Radic Biol Med ; 168: 6-15, 2021 05 20.
Article in English | MEDLINE | ID: mdl-33781892

ABSTRACT

Autism spectrum disorders (ASDs) are highly associated with oxidative stress. We have recently shown that Disconnected-interacting protein homolog 2 A (DIP2A) functions in ASD pathophysiology by regulating cortactin acetylation for spine development and synaptic transmission. However, its role is not fully understood in the context of its abundant expression in mitochondria. In this paper, we found that DIP2A was involved in superoxide dismutase (SOD)-mediated antioxidative reactions. In mice, DIP2A knockout inhibited SOD activity and increased reactive oxygen species (ROS) levels in the cerebral cortex. In vitro gain-of-function experiments further confirmed the positive role of DIP2A in scavenging ROS upon oxidative stress. Moreover, DIP2A knockout caused irregular mitochondrial morphology in the cerebral cortex and impaired mitochondrial metabolism with an over consumption of lipids for energy supply. Taken together, these results revealed unrecognized functions of DIP2A in antioxidative protection, providing another possible explanation for DIP2A-mediated ASD pathophysiology.


Subject(s)
Antioxidants , Staphylococcal Protein A , Animals , Brain/metabolism , Mice , Nuclear Proteins/metabolism , Oxidative Stress , Reactive Oxygen Species , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism
18.
Front Oncol ; 11: 761030, 2021.
Article in English | MEDLINE | ID: mdl-35096572

ABSTRACT

BACKGROUND: Colon cancer is one of the most frequent malignancies and causes high mortality worldwide. Exploring the tumor-immune interactions in the tumor microenvironment and identifying new prognostic and therapeutic biomarkers will assist in decoding the novel mechanism of tumor immunotherapy. BGN is a typical extracellular matrix protein that was previously validated as a signaling molecule regulating multiple processes of tumorigenesis. However, its role in tumor immunity requires further investigation. METHODS: The differentially expressed genes in three GEO datasets were analyzed, and BGN was identified as the target gene by intersection analysis of PPIs. The relevance between clinical outcomes and BGN expression levels was evaluated using data from the GEO database, TCGA and tissue microarray of colon cancer samples. Univariable and multivariable Cox regression models were conducted for identifying the risk factors correlated with clinical prognosis of colon cancer patients. Next, the association between BGN expression levels and the infiltration of immune cells as well as the process of the immune response was analyzed. Finally, we predicted the immunotherapeutic response rates in the subgroups of low and high BGN expression by TIS score, ImmuCellAI and TIDE algorithms. RESULTS: BGN expression demonstrated a statistically significant upregulation in colon cancer tissues than in normal tissues. Elevated BGN was associated with shorter overall survival as well as unfavorable clinicopathological features, including tumor size, serosa invasion and length of hospitalization. Mechanistically, pathway enrichment and functional analysis demonstrated that BGN was positively correlated with immune and stromal scores in the TME and primarily involved in the regulation of immune response. Further investigation revealed that BGN was strongly expressed in the immunosuppressive phenotype and tightly associated with the infiltration of multiple immune cells in colon cancer, especially M2 macrophages and induced Tregs. Finally, we demonstrated that high BGN expression presented a better immunotherapeutic response in colon cancer patients. CONCLUSION: BGN is an encouraging predictor of diagnosis, prognosis and immunotherapeutic response in patients with colon cancer. Assessment of BGN expression represents a novel approach with great promise for identifying patients who may potentially benefit from immunotherapy.

19.
Cell Rep ; 33(5): 108343, 2020 11 03.
Article in English | MEDLINE | ID: mdl-33147466

ABSTRACT

Major depressive disorder (MDD) presents with two primary symptoms: depressed mood and anhedonia, which suggests that distinct neuronal circuits may regulate MDD. However, the underlying circuits of these individual symptoms linked to depression remain elusive. Herein, we identify a discrete circuit of tachykinin precursor 1 (Tac1)-expressing neurons in the nucleus accumbens (NAc) lateral shell, which project to ventral pallidum and contribute to stress-induced anhedonia-like behavior. Selective inhibition and activation of Tac1NAc neurons bidirectionally modulate stress susceptibility, revealing that Tac1 neurons in the NAc are critical for regulating anhedonia-like behaviors. We find that a subpopulation of VP neurons receives inhibitory inputs from Tac1NAc neurons and exhibits decreased excitability in susceptible mice. Furthermore, the inhibition of the neurokinin 1 receptor promotes susceptibility to social stress. Overall, our study reveals a discrete circuit regulating anhedonia-like behavior in mice.


Subject(s)
Anhedonia/physiology , Behavior, Animal/physiology , Neurons/metabolism , Nucleus Accumbens/metabolism , Protein Precursors/metabolism , Stress, Psychological/physiopathology , Tachykinins/metabolism , Animals , Disease Susceptibility , Gene Knockdown Techniques , Male , Mice, Inbred C57BL , Receptors, Neurokinin-1/metabolism , Social Behavior
20.
Front Cell Neurosci ; 14: 29, 2020.
Article in English | MEDLINE | ID: mdl-32153366

ABSTRACT

Axonal development is essential to the establishment of neuronal morphology and circuitry, although the mechanisms underlying axonal outgrowth during the early developmental stages remain unclear. Here, we showed that the conserved disco-interacting protein B (DIP2B) which consists of a DMAP1 domain and a crotonobetaine/carnitine CoA ligase (Caic) domain, is highly expressed in the excitatory neurons of the hippocampus. DIP2B knockout led to excessive axonal outgrowth but not polarity at an early developmental stage. Furthermore, the loss of DIP2B inhibited synaptic transmission for both spontaneous and rapid release in cultured hippocampal neurons. Interestingly, DIP2B function during axonal outgrowth requires tubulin acetylation. These findings reveal a new conserved regulator of neuronal morphology and provide a novel intervention mechanism for neurocognitive disorders.

SELECTION OF CITATIONS
SEARCH DETAIL
...