Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 410
Filter
1.
Int J Rheum Dis ; 27(9): e15315, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39258747

ABSTRACT

OBJECTIVES: Emerging research has investigated the potential impact of several modifiable risk factors on the risks of rheumatoid arthritis (RA), but the findings did not yield consistent results. This study aimed to comprehensively explore the genetic causality between modifiable risk factors and the susceptibility of RA risk using the Mendelian randomization (MR) approach. METHODS: Genetic instruments for modifiable risk factors were selected from several genome-wide association studies at the genome-wide significance level (p < 5 × 10-8), respectively. Summary-level data for RA were sourced from a comprehensive meta-analysis. The causal estimates linking modifiable risk factors to RA risk were assessed using MR analysis with inverse variance weighting (IVW), MR-Egger, weighted, and weighted median methods. RESULTS: After Bonferroni correction for multiple tests, we found the presence of causality between educational attainment and RA, where there were protective effects of educational attainment (college completion) (odds ratio [OR] = 0.50, 95% CI = 0.36, 0.69, p = 2.87E-05) and educational attainment (years of education) (OR = 0.93, 95% CI = 0.90, 0.96, p = 4.18E-06) on the lower RA risks. Nevertheless, smoking initiation was observed to be associated with increased RA risks (OR = 1.27, 95% CI = 1.09, 1.47, p = .002). Moreover, there was no indication of horizontal pleiotropy of genetic variants during causal inference between modifiable risk factors and RA. CONCLUSIONS: Our study reveals the genetic causal impacts of educational attainment and smoking on RA risks, suggesting that the early monitoring and recognition of modifiable risk factors would be beneficial for the preventive counseling/treatment strategies for RA.


Subject(s)
Arthritis, Rheumatoid , Genetic Predisposition to Disease , Genome-Wide Association Study , Mendelian Randomization Analysis , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/epidemiology , Arthritis, Rheumatoid/diagnosis , Humans , Risk Factors , Risk Assessment , Educational Status , Smoking/adverse effects , Smoking/epidemiology , Phenotype , Polymorphism, Single Nucleotide , Protective Factors
2.
Virol J ; 21(1): 225, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39304943

ABSTRACT

Viral infections pose significant threats to human health, leading to a diverse spectrum of infectious diseases. The innate immune system serves as the primary barrier against viruses and bacteria in the early stages of infection. A rapid and forceful antiviral innate immune response is triggered by distinguishing between self-nucleic acids and viral nucleic acids. RNA-binding proteins (RBPs) are a diverse group of proteins which contain specific structural motifs or domains for binding RNA molecules. In the last decade, numerous of studies have outlined that RBPs influence viral replication via diverse mechanisms, directly recognizing viral nucleic acids and modulating the activity of pattern recognition receptors (PRRs). In this review, we summarize the functions of RBPs in regulation of host-virus interplay by controlling the activation of PRRs, such as RIG-I, MDA5, cGAS and TLR3. RBPs are instrumental in facilitating the identification of viral RNA or DNA, as well as viral structural proteins within the cellular cytoplasm and nucleus, functioning as co-receptor elements. On the other hand, RBPs are capable of orchestrating the activation of PRRs and facilitating the transmission of antiviral signals to downstream adaptor proteins by post-translational modifications or aggregation. Gaining a deeper comprehension of the interaction between the host and viruses is crucial for the development of novel therapeutics targeting viral infections.


Subject(s)
Immunity, Innate , RNA-Binding Proteins , Receptors, Pattern Recognition , Signal Transduction , Receptors, Pattern Recognition/metabolism , Receptors, Pattern Recognition/immunology , Humans , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/immunology , RNA-Binding Proteins/genetics , Animals , Virus Diseases/immunology , Virus Diseases/virology , Host-Pathogen Interactions/immunology , RNA, Viral/metabolism , RNA, Viral/immunology , RNA, Viral/genetics , Viruses/immunology , Virus Replication
3.
Heliyon ; 10(12): e32385, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-39183866

ABSTRACT

Introduction: Air pollution is speculated to increase the risk of Coronavirus disease-2019 (COVID-19). Nevertheless, the results remain inconsistent and inconclusive. This study aimed to explore the association between ambient air pollution (AAP) and COVID-19 risks using a meta-analysis with meta-regression modelling. Methods: The inclusion criteria were: original studies quantifying the association using effect sizes and 95 % confidence intervals (CIs); time-series, cohort, ecological or case-crossover peer-reviewed studies in English. Exclusion criteria encompassed non-original studies, animal studies, and data with common errors. PubMed, Web of Science, Embase and Google Scholar electronic databases were systemically searched for eligible literature, up to 31, March 2023. The risk of bias (ROB) was assessed following the Agency for Healthcare Research and Quality parameters. A random-effects model was used to calculate pooled risk ratios (RRs) and their 95 % CIs. Results: A total of 58 studies, between 2020 and 2023, met the inclusion criteria. The global representation was skewed, with major contributions from the USA (24.1 %) and China (22.4 %). The distribution included studies on short-term (43.1 %) and long-term (56.9 %) air pollution exposure. Ecological studies constituted 51.7 %, time-series-27.6 %, cohorts-17.2 %, and case crossover-3.4 %. ROB assessment showed low (86.2 %) and moderate (13.8 %) risk. The COVID-19 incidences increased with a 10 µg/m3 increase in PM2.5 [RR = 4.9045; 95 % CI (4.1548-5.7895)], PM10 [RR = 2.9427: (2.2290-3.8850)], NO2 [RR = 3.2750: (3.1420-3.4136)], SO2 [RR = 3.3400: (2.7931-3.9940)], CO [RR = 2.6244: (2.5208-2.7322)] and O3 [RR = 2.4008: (2.1859-2.6368)] concentrations. A 10 µg/m3 increase in concentrations of PM2.5 [RR = 3.0418: (2.7344-3.3838)], PM10 [RR = 2.6202: (2.1602-3.1781)], NO2 [RR = 3.2226: (2.1411-4.8504)], CO [RR = 1.8021 (0.8045-4.0370)] and O3 [RR = 2.3270 (1.5906-3.4045)] was significantly associated with COVID-19 mortality. Stratified analysis showed that study design, exposure period, and country influenced exposure-response associations. Meta-regression model indicated significant predictors for air pollution-COVID-19 incidence associations. Conclusion: The study, while robust, lacks causality demonstration and focuses only on the USA and China, limiting its generalizability. Regardless, the study provides a strong evidence base for air pollution-COVID-19-risks associations, offering valuable insights for intervention measures for COVID-19.

4.
Rheumatol Int ; 44(10): 2167-2177, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39192023

ABSTRACT

The study aimed to investigate the pattern and trend of Musculoskeletal (MSK) disorders in people aged 5-19 years from 1990 to 2021. The data was sourced from the Global Burden of Disease study 2021. The Age-standardized DALYs rates (ASDR), age-standardized mortality rate (ASMR), age-standardized prevalence rate (ASPR), and age-standardized incidence rate (ASIR) and their corresponding average annual percent change (AAPC) for MSK disorders were evaluated by sex, region, and sociodemographic index (SDI) quintiles. Globally, the ASPR of MSK disorders among children and adolescents increased per 100,000 population from 3048.66 (95% confidence interval [CI]: 2336.68-3887.02) in 1990 to 3105.46 (95% CI: 2421.09-3904.95) in 2021 (AAPC 0.06 [95% CI: 0.05-0.07]). In 2021, individuals aged 15-19 experienced the highest burden compared to those aged 5-9 and 10-14. In 2021, high SDI countries had the highest ASIR, ASPR, ASDR of MSK disorders. The AAPC of ASPR in high SDI countries showed a stark contrast to that in low SDI countries for the same period (AAPC 0.48 vs. AAPC -0.03). From 1990 to 2021, in low SDI and low-middle SDI countries, the increase in DALYs was primarily due to population growth. However, in middle SDI, high-middle, and high SDI countries, the increases were mainly due to epidemiological changes. Globally, patients aged 10-14 experienced better care compared to those in the 5-9 and 15-19 age groups. Specific preventive health measures are needed for females and adolescents aged 15-19 in high SDI countries.


Subject(s)
Global Burden of Disease , Musculoskeletal Diseases , Humans , Adolescent , Child , Musculoskeletal Diseases/epidemiology , Male , Female , Global Burden of Disease/trends , Child, Preschool , Young Adult , Prevalence , Incidence , Global Health , Age Distribution
5.
Int J Mol Sci ; 25(15)2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39125685

ABSTRACT

Transcription factors (TFs) are crucial pre-transcriptional regulatory mechanisms that can modulate the expression of downstream genes by binding to their promoter regions. DOF (DNA binding with One Finger) proteins are a unique class of TFs with extensive roles in plant growth and development. Our previous research indicated that iron content varies among bamboo leaves of different colors. However, to our knowledge, genes related to iron metabolism pathways in bamboo species have not yet been studied. Therefore, in the current study, we identified iron metabolism related (IMR) genes in bamboo and determined the TFs that significantly influence them. Among these, DOFs were found to have widespread effects and potentially significant impacts on their expression. We identified specific DOF members in Dendrocalamus latiflorus with binding abilities through homology with Arabidopsis DOF proteins, and established connections between some of these members and IMR genes using RNA-seq data. Additionally, molecular docking confirmed the binding interactions between these DlDOFs and the DOF binding sites in the promoter regions of IMR genes. The co-expression relationship between the two gene sets was further validated using q-PCR experiments. This study paves the way for research into iron metabolism pathways in bamboo and lays the foundation for understanding the role of DOF TFs in D. latiflorus.


Subject(s)
Gene Expression Regulation, Plant , Iron , Plant Leaves , Plant Proteins , Transcription Factors , Plant Leaves/metabolism , Plant Leaves/genetics , Iron/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Promoter Regions, Genetic , Molecular Docking Simulation , Poaceae/genetics , Poaceae/metabolism
6.
Expert Opin Drug Saf ; : 1-9, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39140181

ABSTRACT

BACKGROUND: Tetracyclines are a class of antibacterial drugs commonly used in clinical practice, but there is no systematic analysis of the adverse effects (AEs) of these drugs. We performed such pharmacovigilance analyses using the US Food and Drug Administration Adverse Event Reporting System (FAERS) database to explore tetracycline-related AEs. RESEARCH DESIGN AND METHODS: We used the pharmacovigilance analysis tool Open Vigil 2.1 to access FAERS data and obtained AE reports from January 2004 to June 2023, including doxycycline, minocycline, tigecycline, omadacycline, sarecycline, and eravacycline as the top suspect drugs. The signal value of the AE of the analyzed drug was calculated by the reporting odds ratio (ROR). RESULTS: A total of 15,020 cases were identified by analyzing drugs. In terms of adverse signals, doxycycline caused gastrointestinal mucosal necrosis (ROR = 1699.652); minocycline was reported to cause bone hyperpigmentation (ROR = 30976.223); tigecycline is responsible for blood fibrinogen decreased (ROR = 1714.078). CONCLUSIONS: AE reports of tetracycline drugs varied significantly. We found some AEs not mentioned in the instruction, such as the ototoxicity of tetracyclines. Doxycycline was associated with psychiatric side effects; minocycline presented in thyroid and skin tissue-associated tumors; abnormal signals were detected with eravacycline in the blood system.

7.
Zhonghua Nan Ke Xue ; 30(2): 167-173, 2024 Feb.
Article in Chinese | MEDLINE | ID: mdl-39177352

ABSTRACT

OBJECTIVE: To systematically evaluate the methodological quality and reporting quality of randomized controlled trials (RCT) on the treatment of BPH with traditional Chinese medicine (TCM), in order to provide some methodological reference for clinical practice and research. METHODS: We searched CNKI, VIP, Wanfang Data and PubMed for RCTs on the treatment of BPH with TCM published in China from January 2013 to November 2023. Two researchers screened the literature separately, and evaluated the methodological and reporting quality of the RCTs based on the Cochrane bias risk assessment tool and CONSORT TCM compound. RESULTS: Totally, 88 RCTs were included in this study. In terms of methodological quality, according to the Cochrane bias risk assessment tool, 27 biases in the process of randomization were identified as of low-risk and the other 61 of a certain risk. Among the allocation-related biases deviating from the established interventions, 76 were of low risk, 10 of a certain risk and 2 of high risk; among the compliance-related biases deviating from the established interventions, 76 were of low risk and 12 of a certain risk; among the biases due to missing outcome data, 86 were of low risk and 2 of a certain risk, while all the biases due to outcome measurement were of low risk; and among the biases from selective reporting, 65 were of low-risk, 2 of a certain risk and 21 of high-risk. In terms of reporting quality, according to the evaluation criteria of consort TCM compound, appropriate key words were used in 1 RCT (0.01%), the random assignment sequence method described in 27 (30.68%), the details of assignment limitation given in 5 (5.68%), assignment concealment mentioned in 3 (3.41%), the blind method and assignment concealment employed in 3 (3.41%), fall-offs recorded in 10 (11.36%), adverse events reported in 38 (43.18%), and limitations of the trials analyzed in 18 (20.45%). All the RCTs lacked complete intervention measures, subject flow chart, clinical trial registration and research schemes. CONCLUSION: At present, the methodological quality and reporting quality of RCTs on the treatment of BPH with TCM are generally low, with the main problems of incomplete experimental designs, lack of detailed description of randomized and blind methods, and insufficient TCM symptom evaluation of outcome indicators. Researchers should be cautious in adopting and applying the results reported, follow the CONSORT statement in design, registration, implement and reporting of the scheme, fully consider the clinical characteristics of TCM in the treatment of BPH, and reasonably design and report the evaluation indicators.


Subject(s)
Medicine, Chinese Traditional , Prostatic Hyperplasia , Randomized Controlled Trials as Topic , Prostatic Hyperplasia/drug therapy , Humans , Male , Medicine, Chinese Traditional/standards , Medicine, Chinese Traditional/methods , Research Design/standards , Drugs, Chinese Herbal/therapeutic use , Drugs, Chinese Herbal/standards
8.
Appl Environ Microbiol ; 90(8): e0086224, 2024 08 21.
Article in English | MEDLINE | ID: mdl-39058035

ABSTRACT

Type 1 fimbria, the short hair-like appendage assembled on the bacterial surface, plays a pivotal role in adhesion and invasion in Edwardsiella piscicida. The type III secretion system (T3SS), another bacterial surface appendage, facilitates E. piscicida's replication in vivo by delivering effectors into host cells. Our previous research demonstrated that E. piscicida T3SS protein EseJ inhibits adhesion and invasion of E. piscicida by suppressing type 1 fimbria. However, how EseJ suppresses type 1 fimbria remains elusive. In this study, a lacI-like operator (nt -245 to -1 of fimA) upstream of type 1 fimbrial operon in E. piscicida was identified, and EseJ inhibits type 1 fimbria through the lacI-like operator. Moreover, through DNA pull-down and electrophoretic mobility shift assay, an AraC-type T3SS regulator, EsrC, was screened and verified to bind to nt -145 to -126 and nt -50 to -1 of fimA, suppressing type 1 fimbria. EseJ is almost abolished upon the depletion of EsrC. EsrC and EseJ impede type 1 fimbria expression. Intriguingly, nutrition and microbiota-derived indole activate type 1 fimbria through downregulating T3SS, alleviating EsrC or EseJ's inhibitory effect on lacI-like operator of type 1 fimbrial operon. By this study, it is revealed that upon entering the gastrointestinal tract, rich nutrients and indole downregulate T3SS and thereof upregulate type 1 fimbria, stimulating efficient adhesion and invasion; upon being internalized into epithelium, the limit in indole and nutrition switches on T3SS and thereof switches off type 1 fimbria, facilitating effector delivery to guarantee E. piscicida's survival/replication in vivo.IMPORTANCEIn this work, we identified the lacI-like operator of type 1 fimbrial operon in E. piscicida, which was suppressed by the repressors-T3SS protein EseJ and EsrC. We unveiled that E. piscicida upregulates type 1 fimbria upon sensing rich nutrition and the microbiota-derived indole, thereof promoting the adhesion of E. piscicida. The increase of indole and nutrition promotes type 1 fimbria by downregulating T3SS. The decrease in EseJ and EsrC alleviates their suppression on type 1 fimbria, and vice versa.


Subject(s)
Bacterial Adhesion , Bacterial Proteins , Edwardsiella , Fimbriae, Bacterial , Operon , Type III Secretion Systems , Edwardsiella/genetics , Edwardsiella/physiology , Fimbriae, Bacterial/metabolism , Fimbriae, Bacterial/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Type III Secretion Systems/genetics , Type III Secretion Systems/metabolism , Animals , Gene Expression Regulation, Bacterial , Enterobacteriaceae Infections/microbiology
9.
Infect Drug Resist ; 17: 2591-2605, 2024.
Article in English | MEDLINE | ID: mdl-38953095

ABSTRACT

Introduction: The emergence of multidrug-resistant Klebsiella pneumoniae (K. pneumoniae) and the decline of effective antibiotics lead to the urgent need for new antibacterial agents. The aim of this study is to investigate the therapeutic effect of antimicrobial peptides against gentamicin-resistant (RT) K. pneumoniae and to screen effective antimicrobial peptides. Methods: In this study, the RT strains were induced by gradient gentamicin, and the RT strains were selected by detecting the expression levels of efflux pump genes, porin genes, and biofilm formation genes of the strains combined with their effects on the cells. Then the effects of four antimicrobial peptides on the efflux pump activity, biofilm formation level and cell condition after infection were detected to explore the effects of antimicrobial peptides on RT strains. Finally, the RT strain was used to induce a mouse model of pneumonia, and the four antimicrobial peptides were used to treat pneumonia mice for in vivo experiments. The pathological changes in lung tissues in each group were detected to explore the antimicrobial peptide with the most significant effect on the RT strain in vivo. Results: The results showed that the minimal inhibitory concentrations of the RT strains (strain C and strain I) were significantly higher than those of the wild-type strain, and the expression of efflux pump, porin and biofilm formation genes was significantly increased. The antimicrobial peptides could effectively inhibit the biofilm formation and efflux pump protein function of the RT strains. In addition, the antimicrobial peptides showed promising antibacterial effects both in vitro and in vivo. Discussion: Our study provided a theoretical basis for the treatment of gentamicin resistant K. pneumoniae infection with antimicrobial peptides, and found that KLA was significantly superior to LL37, Magainin I, KLA and Dermaseptin (10 µg/mL in cells, 50 µg in mice).

10.
J Adv Res ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38964734

ABSTRACT

INTRODUCTION: Intestinal immune dysregulation is strongly linked to the occurrence and formation of tumors. RING finger protein 128 (RNF128) has been identified to play distinct immunoregulatory functions in innate and adaptive systems. However, the physiological roles of RNF128 in intestinal inflammatory conditions such as colitis and colorectal cancer (CRC) remain controversial. OBJECTIVES: To elucidate the function and mechanism of RNF128 in colitis and CRC. METHODS: Animal models of dextran sodium sulfate (DSS)-induced colitis and azoxymethane (AOM)/DSS-induced CRC were established in WT and Rnf128-deficient mice and evaluated by histopathology. Co-immunoprecipitation and ubiquitination analyses were employed to investigate the role of RNF128 in IL-6-STAT3 signaling. RESULTS: RNF128 was significantly downregulated in clinical CRC tissues compared with paired peritumoral tissues. Rnf128-deficient mice were hypersusceptible to both colitis induced by DSS and CRC induced by AOM/DSS or APC mutation. Loss of RNF128 promoted the proliferation of CRC cells and STAT3 activation during the early transformative stage of carcinogenesis in vivo and in vitro when stimulated by IL-6. Mechanistically, RNF128 interacted with the IL-6 receptor α subunit (IL-6Rα) and membrane glycoprotein gp130 and mediated their lysosomal degradation in ligase activity-dependent manner. Through a series of point mutations in the IL-6 receptor, we identified that RNF128 promoted K48-linked polyubiquitination of IL-6Rα at K398/K401 and gp130 at K718/K816/K866. Additionally, blocking STAT3 activation effectively eradicated the inflammatory damage of Rnf128-deficient mice during the transformative stage of carcinogenesis. CONCLUSION: RNF128 attenuates colitis and colorectal tumorigenesis by inhibiting IL-6-STAT3 signaling, which sheds novel insights into the modulation of IL-6 receptors and the inflammation-to-cancer transition.

11.
ACS Omega ; 9(28): 30904-30918, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39035974

ABSTRACT

Tryptanthrin (TRYP) is the main active ingredient in Indigo Naturalis. Studies have shown that TRYP had excellent anti-inflammatory activity, but its specific mechanism has been unclear. In this work, the differentially expressed proteins resulting from TRYP intervention in LPS-stimulated RAW264.7 cells were obtained based on tandem mass tag proteomics technology. The anti-inflammatory mechanism of TRYP was further validated by a combination of experiments using the LPS-induced RAW264.7 cell model in vitro and the DSS-induced UC mouse model (free drinking 2.5% DSS) in vivo. The results demonstrated that TRYP could inhibit levels of NO, IL-6, and TNF-α in LPS-induced RAW264.7 cells. Twelve differential proteins were screened out. And the results indicated that TRYP could inhibit upregulated levels of gp91phox, p22phox, FcεRIγ, IKKα/ß, and p-IκBα and reduce ROS levels in vitro. Besides, after TRYP treatment, the health conditions of colitis mice were all improved. Furthermore, TRYP inhibited the activation of JAK/STAT3, nuclear translocation of NF-κB p65, and promoted the nuclear expression of Nrf2 in vitro and in vivo. This work preliminarily indicated that TRYP might suppress the TLR4/MyD88/ROS/NF-κB and JAK/STAT3 signaling pathways to exert anti-inflammatory effects. Additionally, TRYP could achieve antioxidant effects by regulating the Keap1/Nrf2 signaling pathway.

12.
Pharmaceuticals (Basel) ; 17(6)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38931471

ABSTRACT

Purpose: Adhesion between calcium oxalate crystals and renal tubular epithelial cells is a vital cause of renal stone formation; however, the drugs that inhibit crystal adhesion and the mechanism of inhibition have yet to be explored. Methods: The cell injury model was constructed using nano-COM crystals, and changes in oxidative stress levels, endoplasmic reticulum (ER) stress levels, downstream p38 MAPK protein expression, apoptosis, adhesion protein osteopontin expression, and cell-crystal adhesion were examined in the presence of Laminarin polysaccharide (DLP) and sulfated DLP (SDLP) under protected and unprotected conditions. Results: Both DLP and SDLP inhibited nano-COM damage to human kidney proximal tubular epithelial cell (HK-2), increased cell viability, decreased ROS levels, reduced the opening of mitochondrial membrane permeability transition pore, markedly reduced ER Ca2+ ion concentration and adhesion molecule OPN expression, down-regulated the expression of ER stress signature proteins including CHOP, Caspase 12, and p38 MAPK, and decreased the apoptosis rate of cells. SDLP has a better protective effect on cells than DLP. Conclusions: SDLP protects HK-2 cells from nano-COM crystal-induced apoptosis by reducing oxidative and ER stress levels and their downstream factors, thereby reducing crystal-cell adhesion interactions and the risks of kidney stone formation.

13.
Food Sci Nutr ; 12(6): 3993-4004, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38873474

ABSTRACT

The effect of low-FODMAPs diet on irritable bowel syndrome (IBS) in Western China has not been reported. We aimed to investigate the effect of low-FODMAPs diet on IBS patients in the area and whether low-FODMAPs diet-induced alterations of microbiota could be improved through probiotics. IBS patients were randomized to the control group, low-FODMAPs diet group, probiotics group, or combined group. IBS Symptom Severity Score questionnaire (IBS-SSS) and IBS Quality of Life Score questionnaire (IBS-QOL) were completed at baseline, 2 and 4 weeks to evaluate the severity of symptoms. Fresh feces were collected for analyses of gut microbiota and short-chain fatty acids at baseline and 4 weeks after intervention. Seventy-three patients were included in the per protocol analysis. After intervention, there was significant improvement in IBS-SSS in the low-FODMAPs group (37.5%, 44.2%), probiotics group (51.4%, 62.0%), and combined group (34.1%, 40.4%) at both 2 weeks and 4 weeks, compared with the baseline (p < .05). In the low-FODMAPs group, the abundance of several microbiota (Lachnoclostridium, Enterococcus, etc.) was significantly decreased. Furthermore, after the supplementation of probiotics in the combined group, the abundance of Genus_Ruminococcus, Coprococcus, Acidaminococcus, Ruminiclostridium, Akkermansia, Eggerthella, and Oxalobacter was significantly increased, which was associated with the improvements of symptoms score in the Pearson correlation analysis. Our study confirmed the effectiveness and safety of short-term low-FODMAPs diet in IBS symptoms based on the Chinese diet in Western China. The combination of low-FODMAPs and probiotics plays a beneficial role in gut microbiota in IBS.

14.
PLoS One ; 19(6): e0306145, 2024.
Article in English | MEDLINE | ID: mdl-38913687

ABSTRACT

The adsorption and desorption of phosphorus (P) in soil constitute a crucial internal cycle that is closely associated with soil fertility, exerting direct influence on the quantity, form, and availability of P within the soil. The vertical spatial variation characteristics of soil adsorption and desorption were investigated for the 0-100 cm soil layer in the northeast black soil region in this study. The maximum adsorption capacity (Qmax) and maximum adsorption buffer capacity (MBC) of black soil in the study area ranged from 313.8 to 411.9 mg kg-1 and from 3.1 to 28.8 L kg-1, respectively, within the soil layer of 0-100 cm depth, exhibiting an increasing trend with greater soil depth. The degree of P adsorption saturation (DPS) exhibited a contrasting trend with the variations in Qmax and MBC, ranging from 3.8% to 21.6%. The maximum desorption capacity (Dmax) and desorption rate (Dr) of soil P ranged from 112.8 to 215.7 mg kg-1 and 32.1% to 52.5%, respectively, while the readily desorbable P (RDP) in soil was within the range of 1.02 to 3.35 mg kg-1. Both Dmax, Dr, and RDP exhibited a decreasing trend with increasing soil depth before showing an upward trend. These research findings not only provide essential background data for the systematic investigation of soil P in the black soil region but also serve as a valuable reference for assessing soil quality in this area.


Subject(s)
Phosphorus , Soil , Phosphorus/chemistry , Phosphorus/analysis , Soil/chemistry , Adsorption , China
15.
J Org Chem ; 89(14): 10093-10098, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-38935753

ABSTRACT

A series of amides, including α-bromo hydroxamates, N-alkoxyamides, and N-aryloxyamides, were subjected to phosphine-catalyzed ring-opening O-selective addition with cyclopropenones, producing various special α,ß-unsaturated esters containing oxime ether motif, in moderate to excellent yields, with high regioselectivity, and exclusive O-selectivity. The methodology is highly atom-economical, with simple operation procedures, and compatible with a wide substrate scope (more than 44 examples).

16.
Chem Commun (Camb) ; 60(54): 6961-6964, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38887994

ABSTRACT

An efficient phosphine-catalyzed dearomative [3+2] annulation of 4-nitroisoxazoles with allenoates or Morita-Baylis-Hillman carbonates has been established for the convenient synthesis of bicyclic isoxazoline derivatives. This reaction approach showed a broad substrate scope, high functional group compatibility, and excellent regioselectivity and diastereoselectivity. Furthermore, the success at the gram-scale and synthetic applications of the obtained compound 3a demonstrate the great potential of this methodology for practical applications in organic synthesis.

17.
Expert Opin Ther Targets ; 28(7): 637-649, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38943564

ABSTRACT

INTRODUCTION: Systemic Lupus Erythematosus (SLE) is a multi-dimensional autoimmune disease involving numerous tissues throughout the body. The chromatin accessibility landscapes in immune cells play a pivotal role in governing their activation, function, and differentiation. Aberrant modulation of chromatin accessibility in immune cells is intimately associated with the onset and progression of SLE. AREAS COVERED: In this review, we described the chromatin accessibility landscapes in immune cells, summarized the recent evidence of chromatin accessibility related to the pathogenesis of SLE, and discussed the potential of chromatin accessibility as a valuable option to identify novel therapeutic targets for this disease. EXPERT OPINION: Dynamic changes in chromatin accessibility are intimately related to the pathogenesis of SLE and have emerged as a new direction for exploring its epigenetic mechanisms. The differently accessible chromatin regions in immune cells often contain binding sites for transcription factors (TFs) and cis-regulatory elements such as enhancers and promoters, which may be potential therapeutic targets for SLE. Larger scale cohort studies and integrating epigenomic, transcriptomic, and metabolomic data can provide deeper insights into SLE chromatin biology in the future.


Recently, there has been a growing body of studies that explore the influence of epigenetic factors including DNA methylation, histone post-translational modifications, and non-coding RNA regulation on Systemic Lupus Erythematosus (SLE). Unusual regulation of these common epigenetic modifications would change the chromatin accessibility landscapes in SLE immune cells. Many studies have mapped the chromatin accessibility of various immune cells in SLE patients to uncover potential regulators like transcription factors (TFs) and cis-regulatory elements. Higher chromatin accessibility of immune cells in SLE patients compared to healthy individuals provides new avenues for diagnosing this disease. TFs identified in differentially accessible chromatin regions and their regulated genes might serve as novel targets for therapies, where the phenotypes affected by these genes, like inflammatory cytokine release and immune activation, are reliable bases for evaluating the prognosis of such targeted therapies.In this review, we described the chromatin accessibility landscape in immune cells, summarized the recent evidence of chromatin accessibility related to the process by which SLE develops, and discussed the potential of chromatin accessibility as a valuable option to identify novel therapeutic targets for this disease. Larger scale studies and combining epigenomic, transcriptomic, and metabolomic data can provide deeper insights into SLE chromatin biology in the future.


Subject(s)
Chromatin , Epigenesis, Genetic , Lupus Erythematosus, Systemic , Lupus Erythematosus, Systemic/immunology , Lupus Erythematosus, Systemic/genetics , Humans , Chromatin/metabolism , Animals , Transcription Factors/metabolism , Transcription Factors/genetics , Molecular Targeted Therapy , Disease Progression
18.
BMC Public Health ; 24(1): 1555, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38858655

ABSTRACT

OBJECTIVES: Acute upper respiratory tract infections (AURTIs) are prevalent in the general population. However, studies on the association of short-term exposure to air pollution with the risk of hospital visits for AURTIs in adults are limited. This study aimed to explore the short-term exposure to air pollutants among Chinese adults living in Ningbo. METHODS: Quasi-Poisson time serious regressions with distributed lag non-linear models (DLNM) were applied to explore the association between ambient air pollution and AURTIs cases. Patients ≥ 18 years who visit three hospitals, being representative for urban, urban-rural junction and rural were included in this retrospective study. RESULTS: In total, 104,441 cases with AURTIs were enrolled in hospital during 2015-2019. The main results showed that particulate matter with an aerodynamic diameter less than 2.5 µm (PM2.5), nitrogen dioxide (NO2) and nitrogen dioxide (SO2), were positively associated to hospital visits for AURTIs, except for nitrogen dioxide (O3), which was not statistically significant. The largest single-lag effect for PM2.5 at lag 8 days (RR = 1.02, 95%CI: 1.08-1.40), for NO2 at lag 13 days (RR = 1.03, 95%CI: 1.00-1.06) and for SO2 at lag 5 days (RR = 1.27, 95%CI: 1.08-1.48), respectively. In the stratified analysis, females, and young adults (18-60 years) were more vulnerable to PM2.5 and SO2 and the effect was greater in rural areas and urban-rural junction. CONCLUSIONS: Exposure to ambient air pollution was significantly associated with hospital visits for AURTIs. This study provides epidemiological evidence for policymakers to control better air quality and establish an enhanced system of air pollution alerts.


Subject(s)
Air Pollutants , Air Pollution , Environmental Exposure , Particulate Matter , Respiratory Tract Infections , Humans , China/epidemiology , Male , Female , Adult , Middle Aged , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/etiology , Retrospective Studies , Air Pollutants/adverse effects , Air Pollutants/analysis , Particulate Matter/analysis , Particulate Matter/adverse effects , Environmental Exposure/adverse effects , Environmental Exposure/statistics & numerical data , Air Pollution/adverse effects , Air Pollution/analysis , Aged , Young Adult , Hospitalization/statistics & numerical data , Adolescent , Time Factors , Acute Disease , Nitrogen Dioxide/analysis , Nitrogen Dioxide/adverse effects
19.
Int J Biol Macromol ; 274(Pt 1): 133296, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38914399

ABSTRACT

Soybean protein isolate (SPI) is widely used in the food industry. However, SPI-based emulsion gels tend to aggregate and undergo oiling-off during freeze-thawing. In this study, emulsion gels were prepared by a combination of heat treatment and ionic cross-linking using SPI and sodium alginate (SA) as raw materials. The focus was on exploring the mechanistic effects of the SPI-SA double network structure on the freeze-thaw stability of emulsion gels. The results showed that the addition of SA could form different types of network structures with SPI, due to different degrees of phase separation. In addition, SA appearing on the SPI network indicated that the addition of Ca2+ shielded the electrostatic repulsion between SPI and SA to form SPI-SA complexes. The disappearance of the characteristic peaks of SA and SPI in Fourier transform infrared spectroscopy analysis also confirmed this view. Low-field nuclear magnetic resonance data revealed that SA played a role in restricting water migration within the emulsion gels, increasing bound water content, and thereby improving the water-holding capacity of the emulsion gels. Therefore, the incorporation of SA improved the freeze-thaw stability of SPI emulsion gels. These findings offer a theoretical basis and technical support for SPI application in frozen products.


Subject(s)
Alginates , Emulsions , Freezing , Gels , Soybean Proteins , Alginates/chemistry , Soybean Proteins/chemistry , Emulsions/chemistry , Gels/chemistry , Water/chemistry , Spectroscopy, Fourier Transform Infrared
20.
Acta Pharmacol Sin ; 45(9): 1832-1847, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38702500

ABSTRACT

It has been shown that prostaglandin (PG) E2 synthesized in the lateral parabrachial nucleus (LPBN) is involved in lipopolysaccharide-induced fever. But the neural mechanisms of how intra-LPBN PGE2 induces fever remain unclear. In this study, we investigated whether the LPBN-preoptic area (POA) pathway, the thermoafferent pathway for feed-forward thermoregulatory responses, mediates fever induced by intra-LPBN PGE2 in male rats. The core temperature (Tcore) was monitored using a temperature radiotelemetry transponder implanted in rat abdomen. We showed that microinjection of PGE2 (0.28 nmol) into the LPBN significantly enhanced the density of c-Fos-positive neurons in the median preoptic area (MnPO). The chemical lesioning of MnPO with ibotenate or selective genetic lesioning or inhibition of the LPBN-MnPO pathway significantly attenuated fever induced by intra-LPBN injection of PGE2. We demonstrated that EP3 receptor was a pivotal receptor for PGE2-induced fever, since microinjection of EP3 receptor agonist sulprostone (0.2 nmol) or EP3 receptor antagonist L-798106 (2 nmol) into the LPBN mimicked or weakened the pyrogenic action of LPBN PGE2, respectively, but this was not the case for EP4 and EP1 receptors. Whole-cell recording from acute LPBN slices revealed that the majority of MnPO-projecting neurons originating from the external lateral (el) and dorsal (d) LPBN were excited and inhibited, respectively, by PGE2 perfusion, initiating heat-gain and heat-loss mechanisms. The amplitude but not the frequency of spontaneous and miniature glutamatergic excitatory postsynaptic currents (sEPSCs and mEPSCs) in MnPO-projecting LPBel neurons increased after perfusion with PGE2; whereas the frequency and amplitude of spontaneous inhibitory postsynaptic currents (sIPSCs) and the A-type potassium (IA) current density did not change. In MnPO-projecting LPBd neurons, neither sEPSCs nor sIPSCs responded to PGE2; however, the IA current density was significantly increased by PGE2 perfusion. These electrophysiological responses and the thermoeffector reactions to intra-LPBN PGE2 injection, including increased brown adipose tissue thermogenesis, shivering, and decreased heat dissipation, were all abolished by L-798106, and mimicked by sulprostone. These results suggest that the pyrogenic effects of intra-LPBN PGE2 are mediated by both the inhibition of the LPBd-POA pathway through the EP3 receptor-mediated activation of IA currents and the activation of the LPBel-POA pathway through the selective enhancement of glutamatergic synaptic transmission via EP3 receptors.


Subject(s)
Body Temperature Regulation , Dinoprostone , Fever , Parabrachial Nucleus , Preoptic Area , Receptors, Prostaglandin E, EP3 Subtype , Animals , Male , Rats , Body Temperature Regulation/drug effects , Dinoprostone/pharmacology , Fever/chemically induced , Fever/metabolism , Neurons/drug effects , Neurons/metabolism , Parabrachial Nucleus/drug effects , Parabrachial Nucleus/physiology , Preoptic Area/drug effects , Preoptic Area/metabolism , Rats, Sprague-Dawley , Receptors, Prostaglandin E, EP3 Subtype/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL