Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 158
Filter
1.
JIMD Rep ; 65(2): 124-131, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38444576

ABSTRACT

Lysosomal storage disorders (LSDs) are predominantly enzyme deficiencies leading to substrate accumulation, causing progressive damage to multiple organs. To date, a crucial part of diagnosing LSDs is measuring enzymatic activity in leucocytes, plasma, or dried blood spots (DBS). Here, we present results from a proof-of-principle study, evaluating an innovative digital microfluidics (DMF) platform, referred to as SEEKER®, that can measure the activity of the following four lysosomal enzymes from DBS: α-L-iduronidase (IDUA) for mucopolysaccharidosis I (MPS I), acid α-glucosidase (GAA) for Pompe disease, ß-glucosidase (GBA) for Gaucher disease, and α-galactosidase A (GLA) for Fabry disease. Over 900 DBS were analysed from newborns, children, and adults. DMF successfully detected known patients with MPS I, Pompe disease, and Gaucher disease, and known males with Fabry disease. This is the first demonstration of this multiplexed DMF platform for identification of patients with LSDs in a specialised diagnostic enzyme laboratory environment. We conclude that this DMF platform is relatively simple, high-throughput, and could be readily accommodated into a specialised laboratory as a first-tier test for MPS I, Pompe disease, and Gaucher disease for all patients, and Fabry disease for male patients only.

2.
Sci Transl Med ; 16(729): eadh1334, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38198573

ABSTRACT

The urea cycle enzyme argininosuccinate lyase (ASL) enables the clearance of neurotoxic ammonia and the biosynthesis of arginine. Patients with ASL deficiency present with argininosuccinic aciduria, an inherited metabolic disease with hyperammonemia and a systemic phenotype coinciding with neurocognitive impairment and chronic liver disease. Here, we describe the dysregulation of glutathione biosynthesis and upstream cysteine utilization in ASL-deficient patients and mice using targeted metabolomics and in vivo positron emission tomography (PET) imaging using (S)-4-(3-18F-fluoropropyl)-l-glutamate ([18F]FSPG). Up-regulation of cysteine metabolism contrasted with glutathione depletion and down-regulated antioxidant pathways. To assess hepatic glutathione dysregulation and liver disease, we present [18F]FSPG PET as a noninvasive diagnostic tool to monitor therapeutic response in argininosuccinic aciduria. Human hASL mRNA encapsulated in lipid nanoparticles improved glutathione metabolism and chronic liver disease. In addition, hASL mRNA therapy corrected and rescued the neonatal and adult Asl-deficient mouse phenotypes, respectively, enhancing ureagenesis. These findings provide mechanistic insights in liver glutathione metabolism and support clinical translation of mRNA therapy for argininosuccinic aciduria.


Subject(s)
Argininosuccinic Aciduria , Liver Diseases , Adult , Humans , Animals , Mice , Argininosuccinic Aciduria/genetics , Argininosuccinic Aciduria/therapy , Cysteine , Glutathione , Metabolomics
3.
J Invest Dermatol ; 144(4): 820-832.e9, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37802294

ABSTRACT

Mosaic mutations in genes GNAQ or GNA11 lead to a spectrum of diseases including Sturge-Weber syndrome and phakomatosis pigmentovascularis with dermal melanocytosis. The pathognomonic finding of localized "tramlining" on plain skull radiography, representing medium-sized neurovascular calcification and associated with postnatal neurological deterioration, led us to study calcium metabolism in a cohort of 42 children. In this study, we find that 74% of patients had at least one abnormal measurement of calcium metabolism, the commonest being moderately low serum ionized calcium (41%) or high parathyroid hormone (17%). Lower levels of ionized calcium even within the normal range were significantly associated with seizures, and with specific antiepileptics despite normal vitamin D levels. Successive measurements documented substantial intrapersonal fluctuation in indices over time, and DEXA scans were normal in patients with hypocalcemia. Neurohistology from epilepsy surgery in five patients revealed not only intravascular, but perivascular and intraparenchymal mineral deposition and intraparenchymal microvascular disease in addition to previously reported findings. Neuroradiology review clearly demonstrated progressive calcium deposition in individuals over time. These findings and those of the adjoining paper suggest that calcium deposition in the brain of patients with GNAQ/GNA11 mosaicism may not be a nonspecific sign of damage as was previously thought, but may instead reflect the central postnatal pathological process in this disease spectrum.


Subject(s)
Calcinosis , Neurocutaneous Syndromes , Child , Humans , GTP-Binding Protein alpha Subunits/genetics , GTP-Binding Protein alpha Subunits, Gq-G11/genetics , Calcium/metabolism , Mosaicism , Neurocutaneous Syndromes/diagnosis , Neurocutaneous Syndromes/genetics , Calcinosis/genetics
4.
J Inherit Metab Dis ; 2023 Dec 04.
Article in English | MEDLINE | ID: mdl-38044746

ABSTRACT

Argininosuccinate lyase (ASL) is integral to the urea cycle detoxifying neurotoxic ammonia and the nitric oxide (NO) biosynthesis cycle. Inherited ASL deficiency causes argininosuccinic aciduria (ASA), a rare disease with hyperammonemia and NO deficiency. Patients present with developmental delay, epilepsy and movement disorder, associated with NO-mediated downregulation of central catecholamine biosynthesis. A neurodegenerative phenotype has been proposed in ASA. To better characterise this neurodegenerative phenotype in ASA, we conducted a retrospective study in six paediatric and adult metabolic centres in the UK in 2022. We identified 60 patients and specifically looked for neurodegeneration-related symptoms: movement disorder such as ataxia, tremor and dystonia, hypotonia/fatigue and abnormal behaviour. We analysed neuroimaging with diffusion tensor imaging (DTI) magnetic resonance imaging (MRI) in an individual with ASA with movement disorders. We assessed conventional and DTI MRI alongside single photon emission computer tomography (SPECT) with dopamine analogue radionuclide 123 I-ioflupane, in Asl-deficient mice treated by hASL mRNA with normalised ureagenesis. Movement disorders in ASA appear in the second and third decades of life, becoming more prevalent with ageing and independent from the age of onset of hyperammonemia. Neuroimaging can show abnormal DTI features affecting both grey and white matter, preferentially basal ganglia. ASA mouse model with normalised ureagenesis did not recapitulate these DTI findings and showed normal 123 I-ioflupane SPECT and cerebral dopamine metabolomics. Altogether these findings support the pathophysiology of a late-onset movement disorder with cell-autonomous functional central catecholamine dysregulation but without or limited neurodegeneration of dopaminergic neurons, making these symptoms amenable to targeted therapy.

5.
Nat Commun ; 14(1): 8345, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38102152

ABSTRACT

Bioenergetic failure caused by impaired utilisation of glucose and fatty acids contributes to organ dysfunction across multiple tissues in critical illness. Ketone bodies may form an alternative substrate source, but the feasibility and safety of inducing a ketogenic state in physiologically unstable patients is not known. Twenty-nine mechanically ventilated adults with multi-organ failure managed on intensive care units were randomised (Ketogenic n = 14, Control n = 15) into a two-centre pilot open-label trial of ketogenic versus standard enteral feeding. The primary endpoints were assessment of feasibility and safety, recruitment and retention rates and achievement of ketosis and glucose control. Ketogenic feeding was feasible, safe, well tolerated and resulted in ketosis in all patients in the intervention group, with a refusal rate of 4.1% and 82.8% retention. Patients who received ketogenic feeding had fewer hypoglycaemic events (0.0% vs. 1.6%), required less exogenous international units of insulin (0 (Interquartile range 0-16) vs.78 (Interquartile range 0-412) but had slightly more daily episodes of diarrhoea (53.5% vs. 42.9%) over the trial period. Ketogenic feeding was feasible and may be an intervention for addressing bioenergetic failure in critically ill patients. Clinical Trials.gov registration: NCT04101071.


Subject(s)
Critical Illness , Ketosis , Adult , Humans , Pilot Projects , Intensive Care Units , Ketone Bodies
6.
Lancet Neurol ; 22(12): 1113-1124, 2023 12.
Article in English | MEDLINE | ID: mdl-37977712

ABSTRACT

BACKGROUND: Many infancy-onset epilepsies have poor prognosis for seizure control and neurodevelopmental outcome. Ketogenic diets can improve seizures in children older than 2 years and adults who are unresponsive to antiseizure medicines. We aimed to establish the efficacy of a classic ketogenic diet at reducing seizure frequency compared with further antiseizure medicine in infants with drug-resistant epilepsy. METHODS: In this phase 4, open-label, multicentre, randomised clinical trial, infants aged 1-24 months with drug-resistant epilepsy (defined as four or more seizures per week and two or more previous antiseizure medications) were recruited from 19 hospitals in the UK. Following a 1-week or 2-week observation period, participants were randomly assigned using a computer-generated schedule, without stratification, to either a classic ketogenic diet or a further antiseizure medication for 8 weeks. Treatment allocation was masked from research nurses involved in patient care, but not from participants. The primary outcome was the median number of seizures per day, recorded during weeks 6-8. All analyses were by modified intention to treat, which included all participants with available data. Participants were followed for up to 12 months. All serious adverse events were recorded. The trial is registered with the European Union Drug Regulating Authorities Clinical Trials Database (2013-002195-40). The trial was terminated early before all participants had reached 12 months of follow-up because of slow recruitment and end of funding. FINDINGS: Between Jan 1, 2015, and Sept 30, 2021, 155 infants were assessed for eligibility, of whom 136 met inclusion criteria and were randomly assigned; 75 (55%) were male and 61 (45%) were female. 78 infants were assigned to a ketogenic diet and 58 to antiseizure medication, of whom 61 and 47, respectively, had available data and were included in the modifified intention-to-treat analysis at week 8. The median number of seizures per day during weeks 6-8, accounting for baseline rate and randomised group, was similar between the ketogenic diet group (5 [IQR 1-16]) and antiseizure medication group (3 [IQR 2-11]; IRR 1·33, 95% CI 0·84-2·11). A similar number of infants with at least one serious adverse event was reported in both groups (40 [51%] of 78 participants in the ketogenic diet group and 26 [45%] of 58 participants in the antiseizure medication group). The most common serious adverse events were seizures in both groups. Three infants died during the trial, all of whom were randomly assigned a ketogenic diet: one child (who also had dystonic cerebral palsy) was found not breathing at home; one child died suddenly and unexpectedly at home; and one child went into cardiac arrest during routine surgery under anaesthetic. The deaths were judged unrelated to treatment by local principal investigators and confirmed by the data safety monitoring committee. INTERPRETATION: In this phase 4 trial, a ketogenic diet did not differ in efficacy and tolerability to a further antiseizure medication, and it appears to be safe to use in infants with drug-resistant epilepsy. A ketogenic diet could be a treatment option in infants whose seizures continue despite previously trying two antiseizure medications. FUNDING: National Institute for Health and Care Research.


Subject(s)
Diet, Ketogenic , Drug Resistant Epilepsy , Epilepsy , Child , Adult , Humans , Male , Infant , Female , Child, Preschool , Diet, Ketogenic/adverse effects , Drug Resistant Epilepsy/drug therapy , Seizures/drug therapy , United Kingdom , Treatment Outcome
8.
Clin Chem Lab Med ; 61(2): 302-310, 2023 01 27.
Article in English | MEDLINE | ID: mdl-36395058

ABSTRACT

OBJECTIVES: During 2020, the UK's Department of Health and Social Care (DHSC) established the Moonshot programme to fund various diagnostic approaches for the detection of SARS-CoV-2, the pathogen behind the COVID-19 pandemic. Mass spectrometry was one of the technologies proposed to increase testing capacity. METHODS: Moonshot funded a multi-phase development programme, bringing together experts from academia, industry and the NHS to develop a state-of-the-art targeted protein assay utilising enrichment and liquid chromatography tandem mass spectrometry (LC-MS/MS) to capture and detect low levels of tryptic peptides derived from SARS-CoV-2 virus. The assay relies on detection of target peptides, ADETQALPQRK (ADE) and AYNVTQAFGR (AYN), derived from the nucleocapsid protein of SARS-CoV-2, measurement of which allowed the specific, sensitive, and robust detection of the virus from nasopharyngeal (NP) swabs. The diagnostic sensitivity and specificity of LC-MS/MS was compared with reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) via a prospective study. RESULTS: Analysis of NP swabs (n=361) with a median RT-qPCR quantification cycle (Cq) of 27 (range 16.7-39.1) demonstrated diagnostic sensitivity of 92.4% (87.4-95.5), specificity of 97.4% (94.0-98.9) and near total concordance with RT-qPCR (Cohen's Kappa 0.90). Excluding Cq>32 samples, sensitivity was 97.9% (94.1-99.3), specificity 97.4% (94.0-98.9) and Cohen's Kappa 0.95. CONCLUSIONS: This unique collaboration between academia, industry and the NHS enabled development, translation, and validation of a SARS-CoV-2 method in NP swabs to be achieved in 5 months. This pilot provides a model and pipeline for future accelerated development and implementation of LC-MS/MS protein/peptide assays into the routine clinical laboratory.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Pandemics , COVID-19/diagnosis , COVID-19 Testing , Tandem Mass Spectrometry/methods , Chromatography, Liquid , Prospective Studies , Clinical Laboratory Techniques/methods , Sensitivity and Specificity , Peptides
9.
NPJ Parkinsons Dis ; 8(1): 162, 2022 Nov 24.
Article in English | MEDLINE | ID: mdl-36424392

ABSTRACT

Mutations in the SNCA gene cause autosomal dominant Parkinson's disease (PD), with loss of dopaminergic neurons in the substantia nigra, and aggregation of α-synuclein. The sequence of molecular events that proceed from an SNCA mutation during development, to end-stage pathology is unknown. Utilising human-induced pluripotent stem cells (hiPSCs), we resolved the temporal sequence of SNCA-induced pathophysiological events in order to discover early, and likely causative, events. Our small molecule-based protocol generates highly enriched midbrain dopaminergic (mDA) neurons: molecular identity was confirmed using single-cell RNA sequencing and proteomics, and functional identity was established through dopamine synthesis, and measures of electrophysiological activity. At the earliest stage of differentiation, prior to maturation to mDA neurons, we demonstrate the formation of small ß-sheet-rich oligomeric aggregates, in SNCA-mutant cultures. Aggregation persists and progresses, ultimately resulting in the accumulation of phosphorylated α-synuclein aggregates. Impaired intracellular calcium signalling, increased basal calcium, and impairments in mitochondrial calcium handling occurred early at day 34-41 post differentiation. Once midbrain identity fully developed, at day 48-62 post differentiation, SNCA-mutant neurons exhibited mitochondrial dysfunction, oxidative stress, lysosomal swelling and increased autophagy. Ultimately these multiple cellular stresses lead to abnormal excitability, altered neuronal activity, and cell death. Our differentiation paradigm generates an efficient model for studying disease mechanisms in PD and highlights that protein misfolding to generate intraneuronal oligomers is one of the earliest critical events driving disease in human neurons, rather than a late-stage hallmark of the disease.

10.
Acta Neuropathol Commun ; 10(1): 134, 2022 09 08.
Article in English | MEDLINE | ID: mdl-36076304

ABSTRACT

BACKGROUND: The molecular drivers of early sporadic Parkinson's disease (PD) remain unclear, and the presence of widespread end stage pathology in late disease masks the distinction between primary or causal disease-specific events and late secondary consequences in stressed or dying cells. However, early and mid-stage Parkinson's brains (Braak stages 3 and 4) exhibit alpha-synuclein inclusions and neuronal loss along a regional gradient of severity, from unaffected-mild-moderate-severe. Here, we exploited this spatial pathological gradient to investigate the molecular drivers of sporadic PD. METHODS: We combined high precision tissue sampling with unbiased large-scale profiling of protein expression across 9 brain regions in Braak stage 3 and 4 PD brains, and controls, and verified these results using targeted proteomic and functional analyses. RESULTS: We demonstrate that the spatio-temporal pathology gradient in early-mid PD brains is mirrored by a biochemical gradient of a changing proteome. Importantly, we identify two key events that occur early in the disease, prior to the occurrence of alpha-synuclein inclusions and neuronal loss: (i) a metabolic switch in the utilisation of energy substrates and energy production in the brain, and (ii) perturbation of the mitochondrial redox state. These changes may contribute to the regional vulnerability of developing alpha-synuclein pathology. Later in the disease, mitochondrial function is affected more severely, whilst mitochondrial metabolism, fatty acid oxidation, and mitochondrial respiration are affected across all brain regions. CONCLUSIONS: Our study provides an in-depth regional profile of the proteome at different stages of PD, and highlights that mitochondrial dysfunction is detectable prior to neuronal loss, and alpha-synuclein fibril deposition, suggesting that mitochondrial dysfunction is one of the key drivers of early disease.


Subject(s)
Parkinson Disease , alpha-Synuclein , Humans , Mitochondria/metabolism , Parkinson Disease/pathology , Proteome/metabolism , Proteomics , alpha-Synuclein/metabolism
11.
Int J Neonatal Screen ; 8(2)2022 Mar 25.
Article in English | MEDLINE | ID: mdl-35466196

ABSTRACT

Newborn screening (NBS) programmes are essential in the diagnosis of inherited metabolic diseases (IMDs) and for access to disease modifying treatment. Most European countries follow the World Health Organisation (WHO) criteria to determine which disorders are appropriate for screening at birth; however, these criteria are interpreted and implemented by individual countries differently, creating disparities. Advances in research and diagnostics, together with the promise of new treatments, offer new possibilities to accelerate the expansion of evidence-based screening programmes. A novel and robust algorithm was built to objectively assess and prioritise IMDs for inclusion in NBS programmes. The Wilson and Jungner classic screening principles were used as a foundation to develop individual and measurable criteria. The proposed algorithm is a point-based system structured upon three pillars: condition, screening, and treatment. The algorithm was tested by applying the six IMDs currently approved in the United Kingdom NBS programme. The algorithm generates a weight-based score that could be used as the first step in the complex process of evaluating disorders for inclusion on NBS programmes. By prioritising disorders to be further evaluated, individual countries are able to assess the economic, societal and political aspects of a potential screening programme.

12.
Int J Neonatal Screen ; 8(1)2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35323199

ABSTRACT

Inherited metabolic disorders (IMDs) are mostly rare, have overlapping symptoms, and can be devastating and progressive. However, in many disorders, early intervention can improve long-term outcomes, and newborn screening (NBS) programmes can reduce caregiver stress in the journey to diagnosis and allow patients to receive early, and potentially pre-symptomatic, treatment. Across Europe there are vast discrepancies in the number of IMDs that are screened for and there is an imminent opportunity to accelerate the expansion of evidence-based screening programmes and reduce the disparities in screening programmes across Europe. A comprehensive list of IMDs was created for analysis. A novel NBS evaluation algorithm, described by Burlina et al. in 2021, was used to assess and prioritise IMDs for inclusion on expanded NBS programmes across Europe. Forty-eight IMDs, of which twenty-one were lysosomal storage disorders (LSDs), were identified and assessed with the novel NBS evaluation algorithm. Thirty-five disorders most strongly fulfil the Wilson and Jungner classic screening principles and should be considered for inclusion in NBS programmes across Europe. The recommended disorders should be evaluated at the national level to assess the economic, societal, and political aspects of potential screening programmes.

14.
Trends Analyt Chem ; 157: 116808, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36751553

ABSTRACT

Cardiolipin (CL) is a mitochondria-exclusive phospholipid, primarily localised within the inner mitochondrial membrane, that plays an essential role in mitochondrial architecture and function. Aberrant CL content, structure, and localisation have all been linked to impaired mitochondrial activity and are observed in the pathophysiology of cancer and neurological, cardiovascular, and metabolic disorders. The detection, quantification, and localisation of CL species is a valuable tool to investigate mitochondrial dysfunction and the pathophysiological mechanisms underpinning several human disorders. CL is measured using liquid chromatography, usually combined with mass spectrometry, mass spectrometry imaging, shotgun lipidomics, ion mobility spectrometry, fluorometry, and radiolabelling. This review summarises available methods to analyse CL, with a particular focus on modern mass spectrometry, and evaluates their advantages and limitations. We provide guidance aimed at selecting the most appropriate technique, or combination of techniques, when analysing CL in different model systems, and highlight the clinical contexts in which measuring CL is relevant.

15.
Brain Commun ; 3(4): fcab160, 2021.
Article in English | MEDLINE | ID: mdl-34729477

ABSTRACT

This prospective open-label feasibility study aimed to evaluate acceptability, tolerability and compliance with dietary intervention with K.Vita, a medical food containing a unique ratio of decanoic acid to octanoic acid, in individuals with drug-resistant epilepsy. Adults and children aged 3-18 years with drug-resistant epilepsy took K.Vita daily whilst limiting high-refined sugar food and beverages. K.Vita was introduced incrementally with the aim of achieving ≤35% energy requirements for children or 240 ml for adults. Primary outcome measures were assessed by study completion, participant diary, acceptability questionnaire and K.Vita intake. Reduction in seizures or paroxysmal events was a secondary outcome. 23/35 (66%) children and 18/26 (69%) adults completed the study; completion rates were higher when K.Vita was introduced more gradually. Gastrointestinal disturbances were the primary reason for discontinuation, but symptoms were similar to those reported from ketogenic diets and incidence decreased over time. At least three-quarters of participants/caregivers reported favourably on sensory attributes of K.Vita, such as taste, texture and appearance, and ease of use. Adults achieved a median intake of 240 ml K.Vita, and children 120 ml (19% daily energy). Three children and one adult had ß-hydroxybutyrate >1 mmol/l. There was 50% (95% CI 39-61%) reduction in mean frequency of seizures/events. Reduction in seizures or paroxysmal events correlated significantly with blood concentrations of medium chain fatty acids (C10 and C8) but not ß-hydroxybutyrate. K.Vita was well accepted and tolerated. Side effects were mild and resolved with dietetic support. Individuals who completed the study complied with K.Vita and additional dietary modifications. Dietary intervention had a beneficial effect on frequency of seizures or paroxysmal events, despite absent or very low levels of ketosis. We suggest that K.Vita may be valuable to those with drug-resistant epilepsy, particularly those who cannot tolerate or do not have access to ketogenic diets, and may allow for more liberal dietary intake compared to ketogenic diets, with mechanisms of action perhaps unrelated to ketosis. Further studies of effectiveness of K.Vita are warranted.

16.
Epilepsia ; 62(12): 3131-3142, 2021 12.
Article in English | MEDLINE | ID: mdl-34713469

ABSTRACT

OBJECTIVE: Dravet syndrome (DS) is a severe developmental and epileptic encephalopathy with early childhood onset. Patients with DS do not respond well to antiepileptic drugs and have only a few treatment options available. Here, we evaluated the effect of medium chain triglyceride (MCT) diet therapy in a mouse model of DS. METHODS: Scn1aR1407X/+ DS mice were given diets supplemented with MCTs with varying ratios of decanoic (C10) and octanoic (C8) acid or a control diet for 4 weeks. Video monitoring was performed to evaluate spontaneous convulsive seizure frequency. Susceptibility to hyperthermia-induced seizures was also examined. Medium chain fatty acids, and mitochondrial and antioxidant markers were assessed in brain homogenate. RESULTS: Dietary intervention with MCTs significantly prolonged survival and reduced convulsive seizure frequency during the critical period of highest seizure occurrence in the Scn1aR1407X/+ DS mice. Moreover, MCT diet therapy showed protective effects against hyperthermia-induced seizures. We demonstrated that coadministration of C10/C8 was effective at reducing both seizures and mortality, whereas C10 alone only reduced mortality, suggesting that the ratio of C10 to C8 in the MCT is an important factor for efficacy. When C10 and C8 are supplemented at an 80:20 ratio in the diet, C10 accumulates in the brain in high enough concentrations to enhance brain energy metabolism by both stimulating mitochondrial enrichment and increasing its antioxidant status. SIGNIFICANCE: The results from this study indicate that MCT diet therapy may provide therapeutic benefits in DS. Future clinical studies would elucidate whether these positive effects are mirrored in human patients.


Subject(s)
Antioxidants , Epilepsies, Myoclonic , Animals , Antioxidants/therapeutic use , Diet , Disease Models, Animal , Epilepsies, Myoclonic/drug therapy , Mice , NAV1.1 Voltage-Gated Sodium Channel/genetics , Seizures/drug therapy , Seizures/prevention & control , Triglycerides
17.
Neurol Genet ; 7(3): e597, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34056100

ABSTRACT

OBJECTIVE: We hypothesized that novel investigative pathways are needed to decrease diagnostic odysseys in pediatric mitochondrial disease and sought to determine the utility of clinical exome sequencing in a large cohort with suspected mitochondrial disease and to explore whether any of the traditional indicators of mitochondrial disease predict a confirmed genetic diagnosis. METHODS: We investigated a cohort of 85 pediatric patients using clinical exome sequencing and compared the results with the outcome of traditional diagnostic tests, including biochemical testing of routine parameters (lactate, alanine, and proline), neuroimaging, and muscle biopsy with histology and respiratory chain enzyme activity studies. RESULTS: We established a genetic diagnosis in 36.5% of the cohort and report 20 novel disease-causing variants (1 mitochondrial DNA). Counterintuitively, routine biochemical markers were more predictive of mitochondrial disease than more invasive and elaborate muscle studies. CONCLUSIONS: We propose using biochemical markers to support the clinical suspicion of mitochondrial disease and then apply first-line clinical exome sequencing to identify a definite diagnosis. Muscle biopsy studies should only be used in clinically urgent situations or to confirm an inconclusive genetic result. CLASSIFICATION OF EVIDENCE: This is a Class II diagnostic accuracy study showing that the combination of CSF and plasma biochemical tests plus neuroimaging could predict the presence or absence of exome sequencing confirmed mitochondrial disorders.

18.
Sci Transl Med ; 13(594)2021 05 19.
Article in English | MEDLINE | ID: mdl-34011628

ABSTRACT

Most inherited neurodegenerative disorders are incurable, and often only palliative treatment is available. Precision medicine has great potential to address this unmet clinical need. We explored this paradigm in dopamine transporter deficiency syndrome (DTDS), caused by biallelic loss-of-function mutations in SLC6A3, encoding the dopamine transporter (DAT). Patients present with early infantile hyperkinesia, severe progressive childhood parkinsonism, and raised cerebrospinal fluid dopamine metabolites. The absence of effective treatments and relentless disease course frequently leads to death in childhood. Using patient-derived induced pluripotent stem cells (iPSCs), we generated a midbrain dopaminergic (mDA) neuron model of DTDS that exhibited marked impairment of DAT activity, apoptotic neurodegeneration associated with TNFα-mediated inflammation, and dopamine toxicity. Partial restoration of DAT activity by the pharmacochaperone pifithrin-µ was mutation-specific. In contrast, lentiviral gene transfer of wild-type human SLC6A3 complementary DNA restored DAT activity and prevented neurodegeneration in all patient-derived mDA lines. To progress toward clinical translation, we used the knockout mouse model of DTDS that recapitulates human disease, exhibiting parkinsonism features, including tremor, bradykinesia, and premature death. Neonatal intracerebroventricular injection of human SLC6A3 using an adeno-associated virus (AAV) vector provided neuronal expression of human DAT, which ameliorated motor phenotype, life span, and neuronal survival in the substantia nigra and striatum, although off-target neurotoxic effects were seen at higher dosage. These were avoided with stereotactic delivery of AAV2.SLC6A3 gene therapy targeted to the midbrain of adult knockout mice, which rescued both motor phenotype and neurodegeneration, suggesting that targeted AAV gene therapy might be effective for patients with DTDS.


Subject(s)
Genetic Therapy , Induced Pluripotent Stem Cells , Parkinsonian Disorders , Animals , Disease Models, Animal , Dopamine Plasma Membrane Transport Proteins/genetics , Dopamine Plasma Membrane Transport Proteins/metabolism , Humans , Induced Pluripotent Stem Cells/metabolism , Mice , Parkinsonian Disorders/genetics , Parkinsonian Disorders/therapy , Substantia Nigra/metabolism
19.
Neurochem Int ; 145: 105009, 2021 05.
Article in English | MEDLINE | ID: mdl-33684546

ABSTRACT

Parkinson's disease is a multifactorial neurodegenerative disease. The cellular pathology includes dopamine depletion, decrease in mitochondrial complex I enzyme activity, lysosomal glucocerebrosidase enzyme activity and glutathione levels. The SH-SY5Y human neuroblastoma cell line is one of the most widely used cell line models for Parkinson's disease. However, the consensus on its suitability as a model in its proliferative or differentiated state is lacking. In this study, we characterized and compared the biochemical processes most often studied in PD. This in proliferative and differentiated phenotypes of SH-SY5Y cells and several differences were found. Most notably, extracellular dopamine metabolism was significantly higher in differentiated SH-SY5Y. Furthermore, there was a greater variability in glutathione levels in proliferative phenotype (+/- 49%) compared to differentiated (+/- 16%). Finally, enzyme activity assay revealed significant increase in the lysosomal enzyme glucocerebrosidase activity in differentiated phenotype. In contrast, our study has found similarities between the two phenotypes in mitochondrial electron transport chain activity and tyrosine hydroxylase protein expression. The results of this study demonstrate that despite coming from the same cell line, these cells possess some key differences in their biochemistry. This highlights the importance of careful characterization of relevant disease pathways to assess the suitability of cell lines, such as SH-SY5Y cells, for modelling PD or other diseases, i.e. when using the same cell line but different differentiation states.


Subject(s)
Cell Differentiation/physiology , Cell Proliferation/physiology , Neuroblastoma/metabolism , Parkinson Disease/metabolism , Cell Line, Tumor , Dopamine/metabolism , Humans , Neuroblastoma/pathology , Parkinson Disease/pathology , Serotonin/metabolism , Tyrosine 3-Monooxygenase/metabolism
20.
Brain ; 144(8): 2443-2456, 2021 09 04.
Article in English | MEDLINE | ID: mdl-33734312

ABSTRACT

Aromatic l-amino acid decarboxylase (AADC) deficiency is a complex inherited neurological disorder of monoamine synthesis which results in dopamine and serotonin deficiency. The majority of affected individuals have variable, though often severe cognitive and motor delay, with a complex movement disorder and high risk of premature mortality. For most, standard pharmacological treatment provides only limited clinical benefit. Promising gene therapy approaches are emerging, though may not be either suitable or easily accessible for all patients. To characterize the underlying disease pathophysiology and guide precision therapies, we generated a patient-derived midbrain dopaminergic neuronal model of AADC deficiency from induced pluripotent stem cells. The neuronal model recapitulates key disease features, including absent AADC enzyme activity and dysregulated dopamine metabolism. We observed developmental defects affecting synaptic maturation and neuronal electrical properties, which were improved by lentiviral gene therapy. Bioinformatic and biochemical analyses on recombinant AADC predicted that the activity of one variant could be improved by l-3,4-dihydroxyphenylalanine (l-DOPA) administration; this hypothesis was corroborated in the patient-derived neuronal model, where l-DOPA treatment leads to amelioration of dopamine metabolites. Our study has shown that patient-derived disease modelling provides further insight into the neurodevelopmental sequelae of AADC deficiency, as well as a robust platform to investigate and develop personalized therapeutic approaches.


Subject(s)
Amino Acid Metabolism, Inborn Errors/metabolism , Aromatic-L-Amino-Acid Decarboxylases/deficiency , Dopamine Agents/pharmacology , Induced Pluripotent Stem Cells , Levodopa/pharmacology , Neurogenesis , Neurons/drug effects , Aromatic-L-Amino-Acid Decarboxylases/metabolism , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...