ABSTRACT
Secondary forests are increasing in the Brazilian Amazon and have been cited as an important mechanism for reducing net carbon emissions. However, our understanding of the contribution of secondary forests to the Amazonian carbon balance is incomplete, and it is unclear to what extent emissions from old-growth deforestation have been offset by secondary forest growth. Using MapBiomas 3.1 and recently refined IPCC carbon sequestration estimates, we mapped the age and extent of secondary forests in the Brazilian Amazon and estimated their role in offsetting old-growth deforestation emissions since 1985. We also assessed whether secondary forests in the Brazilian Amazon are growing in conditions favourable for carbon accumulation in relation to a suite of climatic, landscape and local factors. In 2017, the 129,361 km2 of secondary forest in the Brazilian Amazon stored 0.33 ± 0.05 billion Mg of above-ground carbon but had offset just 9.37% of old-growth emissions since 1985. However, we find that the majority of Brazilian secondary forests are situated in contexts that are less favourable for carbon accumulation than the biome average. Our results demonstrate that old-growth forest loss remains the most important factor determining the carbon balance in the Brazilian Amazon. Understanding the implications of these findings will be essential for improving estimates of secondary forest carbon sequestration potential. More accurate quantification of secondary forest carbon stocks will support the production of appropriate management proposals that can efficiently harness the potential of secondary forests as a low-cost, nature-based tool for mitigating climate change.
Subject(s)
Carbon , Conservation of Natural Resources , Brazil , Carbon/analysis , Carbon Sequestration , ForestsABSTRACT
A coordinated response to environmental drivers amongst individual functional traits is central to the plant strategy concept. However, whether the trait co-ordination observed at the global scale occurs at other ecological scales (especially within species) remains an open question. Here, for sapling communities of two tropical dry forest types in Costa Rica, we show large differences amongst traits in the relative contribution of species turnover and intraspecific variation to their directional changes in response to environmental changes along a successional gradient. We studied the response of functional traits associated with the leaf economics spectrum and drought tolerance using intensive sampling to analyse inter- and intra-specific responses to environmental changes and ontogeny. Although the overall functional composition of the sapling communities changed during succession more through species turnover than through intraspecific trait variation, their relative contributions differed greatly amongst traits. For instance, community mean specific leaf area changed mostly due to intraspecific variation. Traits of the leaf economics spectrum showed decoupled responses to environmental drivers and ontogeny. These findings emphasise how divergent ecological mechanisms combine to cause great differences in changes of individual functional traits over environmental gradients and ecological scales.
Subject(s)
Biological Variation, Population , Forests , Plant Leaves , Plants , Quantitative Trait, Heritable , Tropical Climate , Biodiversity , Costa Rica , PhenotypeABSTRACT
Allograft-prosthesis composite (APC) can restore capsular and ligamentous tissues of the knee sacrificed in a tumor extirpation. We asked if performing APC would restore knee stability and allow the use of nonconstrained arthroplasty while preventing aseptic loosening. We retrospectively compared 50 knee APCs performed with non-constrained revision knee prosthesis (Group 1) with 36 matched APCs performed with a constrained prosthesis (Group 2). In Group 1, the survival rate was 69% at five and 62% at ten years. Sixteen reconstructions were removed due to complications: eight deep infections, three fractures, two instabilities, one aseptic loosening, one local recurrence, and one nonunion. In Group 2, the survival rate was 80% at five and 53% at ten years. Nine reconstructions were removed: 3 due to deep infections, 3 to fractures, and 3 to aseptic loosening. In both groups, we observed more allograft fractures when the prosthetic stem does not bypass the host-donor osteotomy (P > 0.05). Both groups had mainly good or excellent MSTS functional results. Survival rate and functional scores and aseptic loosening were similar in both groups. A rotating-hinge APC is recommended when host-donor soft tissue reconstruction fails to restore knee instability. The use of a short prosthetic stem has a statistical relationship with APC fractures.
ABSTRACT
Conservation of tropical forest biodiversity increasingly depends on its recovery following severe human disturbance. Our ability to measure recovery using current similarity indices suffers from two limitations: different sized individuals are treated as equal, and the indices are proportionate (a community with twice the individuals of every species as compared with the reference community would be assessed as identical). We define an alternative recovery index for trees - the Tanner index, as the mean of the quantitative Bray-Curtis similarity indices of species composition for stem density and for basal area. We used the new index to compare the original (pre-gap) and post-gap composition of five experimental gap plots (each 90-100 m(2)) and four control plots over 24-35 years in the Blue Mountains of Jamaica. After 24-35 years, these small gaps surrounded by undisturbed forest had recovered 68% of the sum of per species stem density and 29% of the sum of per species basal area, a recovery index of 47%. Four endemic species were especially reduced in density and basal area. With the incorporation of basal area and stem density, our index reduces over-estimations of forest recovery obtained using existing similarity indices (by 24%-41%), and thus yields more accurate estimates of forest conservation status. Finally, our study indicates that the two kinds of comparisons: 1) over time between pre-gap and post-gap composition and 2) over space between gap plots and spatial controls (space-for-time substitution) yield broadly similar results, which supports the value of using space-for-time substitutions in studying forest recovery, at least in this tropical montane forest.