Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 630(8016): 437-446, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38599239

ABSTRACT

Gasdermin D (GSDMD) is the common effector for cytokine secretion and pyroptosis downstream of inflammasome activation and was previously shown to form large transmembrane pores after cleavage by inflammatory caspases to generate the GSDMD N-terminal domain (GSDMD-NT)1-10. Here we report that GSDMD Cys191 is S-palmitoylated and that palmitoylation is required for pore formation. S-palmitoylation, which does not affect GSDMD cleavage, is augmented by mitochondria-generated reactive oxygen species (ROS). Cleavage-deficient GSDMD (D275A) is also palmitoylated after inflammasome stimulation or treatment with ROS activators and causes pyroptosis, although less efficiently than palmitoylated GSDMD-NT. Palmitoylated, but not unpalmitoylated, full-length GSDMD induces liposome leakage and forms a pore similar in structure to GSDMD-NT pores shown by cryogenic electron microscopy. ZDHHC5 and ZDHHC9 are the major palmitoyltransferases that mediate GSDMD palmitoylation, and their expression is upregulated by inflammasome activation and ROS. The other human gasdermins are also palmitoylated at their N termini. These data challenge the concept that cleavage is the only trigger for GSDMD activation. They suggest that reversible palmitoylation is a checkpoint for pore formation by both GSDMD-NT and intact GSDMD that functions as a general switch for the activation of this pore-forming family.


Subject(s)
Gasdermins , Lipoylation , Phosphate-Binding Proteins , Reactive Oxygen Species , Animals , Female , Humans , Male , Mice , Acyltransferases/metabolism , Cryoelectron Microscopy , Cysteine/metabolism , Gasdermins/chemistry , Gasdermins/metabolism , Inflammasomes/metabolism , Liposomes/metabolism , Liposomes/chemistry , Mitochondria/metabolism , Phosphate-Binding Proteins/chemistry , Phosphate-Binding Proteins/metabolism , Pyroptosis , Reactive Oxygen Species/metabolism , THP-1 Cells
2.
Trends Immunol ; 44(8): 571-573, 2023 08.
Article in English | MEDLINE | ID: mdl-37414717

ABSTRACT

In a recent article, He et al. report that, in response to dietary protein antigens, mouse intestinal epithelial cells (IECs) accumulate a newfound 13-kDa N terminus of gasdermin D (GSDMD-N13), cleaved by caspase-3/7. Unlike the pyroptotic 30-kDa fragment, GSDMD-N13 translocates to the nucleus, inducing CIITA and major histocompatibility complex class II (MHCII) expression to promote type 1 regulatory T (T1r) cell development, thus revealing its role in balancing immunity and food tolerance.


Subject(s)
Intracellular Signaling Peptides and Proteins , Pyroptosis , Animals , Mice
3.
bioRxiv ; 2023 Mar 07.
Article in English | MEDLINE | ID: mdl-36945424

ABSTRACT

Gasdermin D (GSDMD) is the common effector for cytokine secretion and pyroptosis downstream of inflammasome activation by forming large transmembrane pores upon cleavage by inflammatory caspases. Here we report the surprising finding that GSDMD cleavage is not sufficient for its pore formation. Instead, GSDMD is lipidated by S-palmitoylation at Cys191 upon inflammasome activation, and only palmitoylated GSDMD N-terminal domain (GSDMD-NT) is capable of membrane translocation and pore formation, suggesting that palmitoylation licenses GSDMD activation. Treatment by the palmitoylation inhibitor 2-bromopalmitate and alanine mutation of Cys191 abrogate GSDMD membrane localization, cytokine secretion, and cell death, without affecting GSDMD cleavage. Because palmitoylation is formed by a reversible thioester bond sensitive to free thiols, we tested if GSDMD palmitoylation is regulated by cellular redox state. Lipopolysaccharide (LPS) mildly and LPS plus the NLRP3 inflammasome activator nigericin markedly elevate reactive oxygen species (ROS) and GSDMD palmitoylation, suggesting that these two processes are coupled. Manipulation of cellular ROS by its activators and quenchers augment and abolish, respectively, GSDMD palmitoylation, GSDMD pore formation and cell death. We discover that zDHHC5 and zDHHC9 are the major palmitoyl transferases that mediate GSDMD palmitoylation, and when cleaved, recombinant and partly palmitoylated GSDMD is 10-fold more active in pore formation than bacterially expressed, unpalmitoylated GSDMD, evidenced by liposome leakage assay. Finally, other GSDM family members are also palmitoylated, suggesting that ROS stress and palmitoylation may be a general switch for the activation of this pore-forming family. One-Sentence Summary: GSDMD palmitoylation is induced by ROS and required for pore formation.

4.
J Biol Chem ; 297(4): 101112, 2021 10.
Article in English | MEDLINE | ID: mdl-34428449

ABSTRACT

S-acylation, also known as palmitoylation, is the most widely prevalent form of protein lipidation, whereby long-chain fatty acids get attached to cysteine residues facing the cytosol. In humans, 23 members of the zDHHC family of integral membrane enzymes catalyze this modification. S-acylation is critical for the life cycle of many enveloped viruses. The Spike protein of SARS-CoV-2, the causative agent of COVID-19, has the most cysteine-rich cytoplasmic tail among known human pathogens in the closely related family of ß-coronaviruses; however, it is unclear which of the cytoplasmic cysteines are S-acylated, and what the impact of this modification is on viral infectivity. Here we identify specific cysteine clusters in the Spike protein of SARS-CoV-2 that are targets of S-acylation. Interestingly, when we investigated the effect of the cysteine clusters using pseudotyped virus, mutation of the same three clusters of cysteines severely compromised viral infectivity. We developed a library of expression constructs of human zDHHC enzymes and used them to identify zDHHC enzymes that can S-acylate SARS-CoV-2 Spike protein. Finally, we reconstituted S-acylation of SARS-CoV-2 Spike protein in vitro using purified zDHHC enzymes. We observe a striking heterogeneity in the S-acylation status of the different cysteines in our in cellulo experiments, which, remarkably, was recapitulated by the in vitro assay. Altogether, these results bolster our understanding of a poorly understood posttranslational modification integral to the SARS-CoV-2 Spike protein. This study opens up avenues for further mechanistic dissection and lays the groundwork toward developing future strategies that could aid in the identification of targeted small-molecule modulators.


Subject(s)
COVID-19/pathology , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Acylation , Acyltransferases/genetics , Acyltransferases/metabolism , Amino Acid Sequence , COVID-19/virology , Cysteine/metabolism , HEK293 Cells , Humans , Lipoylation , Mutagenesis, Site-Directed , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , SARS-CoV-2/isolation & purification , Sequence Alignment , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Virus Internalization
SELECTION OF CITATIONS
SEARCH DETAIL
...