Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
J Nurs Manag ; 30(7): 2715-2723, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35770714

ABSTRACT

AIM: To identify and describe the impact areas of a newly developed leadership development programme focussed on positioning leaders to improve the student experience of the clinical learning environment. BACKGROUND: There is a need to consider extending traditional ways of developing leaders within the clinical learning in order to accommodate an increased number of students and ensure their learning experience is fulfilling and developmental. The Florence Nightingale Foundation implemented a bespoke leadership development programme within the clinical learning environment. Identifying the areas of impact will help to inform organisational decision making regarding the benefits of encouraging and supporting emerging leaders to undertake this type of programme. METHOD: For this qualitative descriptive study, eight health care professionals who took part in a bespoke leadership development programme were interviewed individually and then collectively. The Florence Nightingale Foundation fellowship/scholarship programme is examined to determine impact. RESULTS: Two key themes were described in relation to impact of the programme. These were 'Personal Development' and 'Professional Impact'. The two key themes comprised several subthemes. The notion of time and space to think was subsumed within each theme. CONCLUSION: Data highlights that the Florence Nightingale Foundation programme had a distinct impact on participants by transforming thinking and increasing self-confidence to enable changes to make improvements both within their organisations and at national level. IMPLICATIONS FOR NURSING MANAGEMENT: Health care managers must continue to invest in building leadership capacity and capability through programmes that can help position individuals to realize their potential to positively influence health outcomes and wider society.


Subject(s)
Leadership , Learning , Humans , Health Personnel , Qualitative Research
2.
PLoS One ; 14(7): e0219055, 2019.
Article in English | MEDLINE | ID: mdl-31339881

ABSTRACT

Vascular tissue in plants provides a resource distribution network for water and nutrients that exhibits remarkable diversity in patterning among different species. In many succulent plants, the vascular network includes longitudinally-oriented supplemental vascular bundles (SVBs) in the central core of the succulent stems and roots in addition to the more typical zone of vascular tissue development (vascular cambium) in a cylinder at the periphery of the succulent organ. Plant SVBs evolved in over 38 plant families often in tandem with evolutionary increases in stem and root parenchyma storage tissue, so it is of interest to understand the evolutionary-developmental processes responsible for their recurrent evolution and patterning. Previous mathematical models have successfully recreated the two-dimensional vascular patterns in stem and root cross sections, but such models have yet to recreate three-dimensional vascular patterning. Here, a stochastic reaction-diffusion model of plant vascular bundle patterning is developed in an effort to highlight a potential mechanism of three dimensional patterning-Turing pattern formation coupled with longitudinal efflux of a regulatory molecule. A relatively simple model of four or five molecules recreated empirical SVB patterns and many other common vascular arrangements. SVBs failed to develop below a threshold width of parenchymatous tissues, suggesting a mechanism of evolutionary character loss due to changes in the spatial context in which development takes place. Altered diffusion rates of the modeled activator and substrate molecules affected the number and size of the simulated SVBs. This work provides a first mathematical model employing a stochastic Turing-type mechanism that recreates three dimensional vascular patterns seen in plant stems. The model offers predictions that can be tested using molecular-genetic approaches. Evolutionary-developmental ramifications concerning evolution of diffusion rates, organ size and geometry are discussed.


Subject(s)
Models, Biological , Plant Stems/growth & development , Plant Vascular Bundle/growth & development , Algorithms , Biological Evolution , Body Patterning/genetics , Cambium/genetics , Cambium/growth & development , Computer Simulation , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Morphogenesis/genetics , Plant Roots/genetics , Plant Roots/growth & development , Plant Stems/genetics , Plant Vascular Bundle/genetics , Stochastic Processes
3.
Article in English | MEDLINE | ID: mdl-30533624

ABSTRACT

Erwinia dacicola is a dominant endosymbiont of the pestiferous olive fly. Its genome is similar in size and GC content to those of free-living Erwinia species, including the plant pathogen Erwinia amylovora. The E. dacicola genome encodes the metabolic capability to supplement and detoxify the olive fly's diet in larval and adult stages.

4.
Article in English | MEDLINE | ID: mdl-30533936

ABSTRACT

Enterobacter sp. strain OLF colonizes laboratory-reared and wild individuals of the olive fruit fly Bactrocera oleae. The 5.07-kbp genome sequence of Enterobacter sp. strain OLF encodes metabolic pathways that allow the bacterium to partially supplement the diet of the olive fly when its dominant endosymbiont, Erwinia dacicola, is absent.

5.
Sci Rep ; 8(1): 15936, 2018 10 29.
Article in English | MEDLINE | ID: mdl-30374192

ABSTRACT

The pestivorous tephritid olive fly has long been known as a frequent host of the obligately host-associated bacterial endosymbiont, Erwinia dacicola, as well as other facultative endosymbionts. The genomes of Erwinia dacicola and Enterobacter sp. OLF, isolated from a California olive fly, encode the ability to supplement amino acids and vitamins missing from the olive fruit on which the larvae feed. The Enterobacter sp. OLF genome encodes both uricase and ureases, and the Er. dacicola genome encodes an allantoate transport pathway, suggesting that bird feces or recycling the fly's waste products may be important sources of nitrogen. No homologs to known nitrogenases were identified in either bacterial genome, despite suggestions of their presence from experiments with antibiotic-treated flies. Comparisons between the olive fly endosymbionts and their free-living relatives revealed similar GC composition and genome size. The Er. dacicola genome has fewer genes for amino acid metabolism, cell motility, and carbohydrate transport and metabolism than free-living Erwinia spp. while having more genes for cell division, nucleotide metabolism and replication as well as mobile elements. A 6,696 bp potential lateral gene transfer composed primarily of amino acid synthesis and transport genes was identified that is also observed in Pseudomonas savastanoii pv savastanoii, the causative agent of olive knot disease.


Subject(s)
Enterobacter/genetics , Erwinia/genetics , Genome, Bacterial , Genomics/methods , Base Composition , Nitrogen/metabolism , Olea/microbiology , RNA, Ribosomal, 16S/chemistry , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism , Sequence Analysis, DNA , Symbiosis
6.
PLoS One ; 13(6): e0197166, 2018.
Article in English | MEDLINE | ID: mdl-29856865

ABSTRACT

Plant succulence provides a classic example of evolutionary convergence in over 40 plant families. If evolutionary parallelism is in fact responsible for separate evolutionary origins of expanded storage tissues in stems, hypocotyls, and roots, we expect similar gene expression profiles in stem and hypocotyl / root tubers. We analyzed RNA-Seq transcript abundance patterns in stem and hypocotyl / root tubers of the Brassica crops kohlrabi (B. oleracea) and turnip (B. rapa) and compared their transcript expression profiles to those in the conspecific thin-stemmed and thin-rooted crops flowering kale and pak choi, respectively. Across these four cultivars, 38,192 expressed gene loci were identified. Of the 3,709 differentially-expressed genes (DEGs) in the turnip: pak choi comparison and the 6,521 DEGs in the kohlrabi: kale comparison, turnips and kohlrabies share a statistically disproportionate overlap of 841 DEG homologs in their tubers (p value < 1e-10). This overlapping set is statistically enriched in biochemical functions that are also associated with tuber induction in potatoes and sweet potatoes: sucrose metabolism, lipoxygenases, auxin metabolism, and meristem development. These shared expression profiles in tuberous stems and root / hypocotyls in Brassica suggest parallel employment of shared molecular genetic pathways during the evolution of tubers in stems, hypocotyls and roots of Brassica crops and more widely in other tuberous plants as well.


Subject(s)
Brassica/metabolism , Evolution, Molecular , Gene Expression Profiling , Gene Expression Regulation, Plant/physiology , Hypocotyl/metabolism , Plant Tubers/metabolism , Brassica/genetics , Genetic Loci/physiology , Hypocotyl/genetics , Plant Tubers/genetics
7.
Proteomics ; 18(10): e1700064, 2018 05.
Article in English | MEDLINE | ID: mdl-29645342

ABSTRACT

The number of small proteins (SPs) encoded in the Escherichia coli genome is unknown, as current bioinformatics and biochemical techniques make short gene and small protein identification challenging. One method of small protein identification involves adding an epitope tag to the 3' end of a short open reading frame (sORF) on the chromosome, with synthesis confirmed by immunoblot assays. In this study, this strategy was used to identify new E. coli small proteins, tagging 80 sORFs in the E. coli genome, and assayed for protein synthesis. The selected sORFs represent diverse sequence characteristics, including degrees of sORF conservation, predicted transmembrane domains, sORF direction with respect to flanking genes, ribosome binding site (RBS) prediction, and ribosome profiling results. Of 80 sORFs, 36 resulted in encoded synthesized proteins-a 45% success rate. Modeling of detected versus non-detected small proteins analysis showed predictions based on RBS prediction, transcription data, and ribosome profiling had statistically-significant correlation with protein synthesis; however, there was no correlation between current sORF annotation and protein synthesis. These results suggest substantial numbers of small proteins remain undiscovered in E. coli, and existing bioinformatics techniques must continue to improve to facilitate identification.


Subject(s)
Computational Biology/methods , Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , Molecular Sequence Annotation , Open Reading Frames , Protein Biosynthesis , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Genome, Bacterial , Ribosomes
8.
BMC Genomics ; 15: 946, 2014 Dec 05.
Article in English | MEDLINE | ID: mdl-25475368

ABSTRACT

BACKGROUND: The reliable identification of proteins containing 50 or fewer amino acids is difficult due to the limited information content in short sequences. The 37 amino acid CydX protein in Escherichia coli is a member of the cytochrome bd oxidase complex, an enzyme found throughout Eubacteria. To investigate the extent of CydX conservation and prevalence and evaluate different methods of small protein homologue identification, we surveyed 1095 Eubacteria species for the presence of the small protein. RESULTS: Over 300 homologues were identified, including 80 unannotated genes. The ability of both closely-related and divergent homologues to complement the E. coli ΔcydX mutant supports our identification techniques, and suggests that CydX homologues retain similar function among divergent species. However, sequence analysis of these proteins shows a great degree of variability, with only a few highly-conserved residues. An analysis of the co-variation between CydX homologues and their corresponding cydA and cydB genes shows a close synteny of the small protein with the CydA long Q-loop. Phylogenetic analysis suggests that the cydABX operon has undergone horizontal gene transfer, although the cydX gene likely evolved in a progenitor of the Alpha, Beta, and Gammaproteobacteria. Further investigation of cydAB operons identified two additional conserved hypothetical small proteins: CydY encoded in CydAQlong operons that lack cydX, and CydZ encoded in more than 150 CydAQshort operons. CONCLUSIONS: This study provides a systematic analysis of bioinformatics techniques required for the unique challenges present in small protein identification and phylogenetic analyses. These results elucidate the prevalence of CydX throughout the Proteobacteria, provide insight into the selection pressure and sequence requirements for CydX function, and suggest a potential functional interaction between the small protein and the CydA Q-loop, an enigmatic domain of the cytochrome bd oxidase complex. Finally, these results identify other conserved small proteins encoded in cytochrome bd oxidase operons, suggesting that small protein subunits may be a more common component of these enzymes than previously thought.


Subject(s)
Cytochromes/genetics , Electron Transport Chain Complex Proteins/genetics , Escherichia coli Proteins/genetics , Evolution, Molecular , Oxidoreductases/genetics , Alleles , Amino Acid Sequence , Computational Biology/methods , Conserved Sequence , Cytochrome b Group , Cytochromes/chemistry , Cytochromes/metabolism , Electron Transport Chain Complex Proteins/chemistry , Electron Transport Chain Complex Proteins/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Gene Order , Gene Transfer, Horizontal , Genetic Complementation Test , Genome, Bacterial , Genomics , Hydrophobic and Hydrophilic Interactions , Markov Chains , Molecular Sequence Annotation , Molecular Sequence Data , Mutation , Operon , Oxidoreductases/chemistry , Oxidoreductases/metabolism , Phylogeny , Position-Specific Scoring Matrices , Protein Interaction Domains and Motifs , Proteobacteria/genetics , Proteobacteria/metabolism , Sequence Alignment , Sequence Analysis, DNA
9.
Syst Biol ; 63(5): 697-711, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24852061

ABSTRACT

Patterns of adaptation in response to environmental variation are central to our understanding of biodiversity, but predictions of how and when broad-scale environmental conditions such as climate affect organismal form and function remain incomplete. Succulent plants have evolved in response to arid conditions repeatedly, with various plant organs such as leaves, stems, and roots physically modified to increase water storage. Here, we investigate the role played by climate conditions in shaping the evolution of succulent forms in a plant clade endemic to Madagascar and the surrounding islands, part of the hyper-diverse genus Euphorbia (Euphorbiaceae). We used multivariate ordination of 19 climate variables to identify links between particular climate variables and three major forms of succulence-succulent leaves, cactiform stem succulence, and tubers. We then tested the relationship between climatic conditions and succulence, using comparative methods that account for shared evolutionary history. We confirm that plant water storage is associated with the two components of aridity, temperature, and precipitation. Cactiform stem succulence, however, is not prevalent in the driest environments, countering the widely held view of cactiforms as desert icons. Instead, leaf succulence and tubers are significantly associated with the lowest levels of precipitation. Our findings provide a clear link between broad-scale climatic conditions and adaptation in land plants, and new insights into the climatic conditions favoring different forms of succulence. This evidence for adaptation to climate raises concern over the evolutionary future of succulent plants as they, along with other organisms, face anthropogenic climate change.


Subject(s)
Biodiversity , Climate , Euphorbia/classification , Euphorbia/physiology , Phylogeny , Euphorbia/genetics , Genetic Markers/genetics , Genetic Speciation , Madagascar , Plant Leaves/physiology
10.
PLoS One ; 8(11): e79061, 2013.
Article in English | MEDLINE | ID: mdl-24223880

ABSTRACT

Insects feeding on plant sap, blood, and other nutritionally incomplete diets are typically associated with mutualistic bacteria that supplement missing nutrients. Herbivorous mammal dung contains more than 86% cellulose and lacks amino acids essential for insect development and reproduction. Yet one of the most ecologically necessary and evolutionarily successful groups of beetles, the dung beetles (Scarabaeinae) feeds primarily, or exclusively, on dung. These associations suggest that dung beetles may benefit from mutualistic bacteria that provide nutrients missing from dung. The nesting behaviors of the female parent and the feeding behaviors of the larvae suggest that a microbiome could be vertically transmitted from the parental female to her offspring through the brood ball. Using sterile rearing and a combination of molecular and culture-based techniques, we examine transmission of the microbiome in the bull-headed dung beetle, Onthophagus taurus. Beetles were reared on autoclaved dung and the microbiome was characterized across development. A ~1425 bp region of the 16S rRNA identified Pseudomonadaceae, Enterobacteriaceae, and Comamonadaceae as the most common bacterial families across all life stages and populations, including cultured isolates from the 3(rd) instar digestive system. Finer level phylotyping analyses based on lepA and gyrB amplicons of cultured isolates placed the isolates closest to Enterobacter cloacae, Providencia stuartii, Pusillimonas sp., Pedobacter heparinus, and Lysinibacillus sphaericus. Scanning electron micrographs of brood balls constructed from sterile dung reveals secretions and microbes only in the chamber the female prepares for the egg. The use of autoclaved dung for rearing, the presence of microbes in the brood ball and offspring, and identical 16S rRNA sequences in both parent and offspring suggests that the O. taurus female parent transmits specific microbiome members to her offspring through the brood chamber. The transmission of the dung beetle microbiome highlights the maintenance and likely importance of this newly-characterized bacterial community.


Subject(s)
Coleoptera/microbiology , Manure/parasitology , Microbiota/physiology , Symbiosis , Animals , Bacteria/classification , Bacteria/genetics , Bacteria/growth & development , Cattle , Coleoptera/growth & development , Comamonadaceae/genetics , Comamonadaceae/physiology , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Enterobacteriaceae/genetics , Enterobacteriaceae/physiology , Female , Host-Pathogen Interactions , Larva/growth & development , Larva/microbiology , Microbiota/genetics , Molecular Sequence Data , Phylogeny , Pseudomonadaceae/genetics , Pseudomonadaceae/physiology , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
11.
Evolution ; 67(8): 2273-83, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23888850

ABSTRACT

Biological systems are remarkably robust in the face of environmental, mutational, and developmental perturbations. Analyses of molecular networks reveal recurrent features, such as modularity, that have been implicated in robustness and evolvability. Multiple theoretical models account for these features, yet few empirical tests of these models exist. Here I develop a set of broadly applicable methodologies to enable expanded empirical evaluation of model predictions. The methodologies focus on the inference and analysis of networks that depict evolutionary correlations among characters. I apply these methodologies to analyze an evolutionary network at a larger scale of organization among 42 stem anatomical and morphological characters of 52 species in the genus Adenia (Passifloraceae). I evaluate a model predicting that modular evolutionary networks will evolve in response to environmental change. The evolutionary network of Adenia is modular and "small-world," and the three diagnosed modules correspond roughly to functions of transport, storage, and mechanical support. The phylogenetically informed analyses suggest that the storage module is more impacted by environmental change than expected by chance. These results corroborate the hypothesis that modularity reduces the impact of environmental change, but this result requires further empirical evaluation that can be aided by the proposed methods in additional study systems.


Subject(s)
Biological Evolution , Models, Genetic , Passifloraceae/classification , Passifloraceae/genetics , Passifloraceae/anatomy & histology
12.
Environ Entomol ; 41(2): 265-74, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22506998

ABSTRACT

The microbiome of the olive fruit fly, Bactrocera oleae (Gmelin), a worldwide pest of olives (Olea europaea L.), has been examined for >100 yr as part of efforts to identify bacteria that are plant pathogens vectored by the fly or are beneficial endosymbionts essential for the fly's survival and thus targets for possible biological control. Because tephritid fruit flies feed on free-living bacteria in their environment, distinguishing between the transient, acquired bacteria of their diet and persistent, resident bacteria that are vertically transmitted endosymbionts is difficult. Several culture-dependent and -independent studies have identified a diversity of species in the olive fruit fly microbiome, but they have not distinguished the roles of the microbes. Candidatus Erwinia dacicola, has been proposed to be a coevolved endosymbiont of the olive fruit fly; however, this was based on limited samples from two Italian populations. Our study shows that C. Erwinia dacicola was present in all New and Old World populations and in the majority of individuals of all life stages sampled in 2 yr. Olive fruit flies reared on olives in the laboratory had frequencies of C. Erwinia dacicola similar to that of wild populations; however, flies reared on artificial diets containing antibiotics in the laboratory rarely had the endosymbiont. The relative abundance of C. Erwinia dacicola varied across development stages, being most abundant in ovipositing females and larvae. This uniform presence of C. Erwini dacicola suggests that it is a persistent, resident endosymbiont of the olive fruit fly.


Subject(s)
Helicobacter/isolation & purification , Tephritidae/physiology , Animals , Female , Helicobacter/physiology , Italy , Life Cycle Stages , Male , Olea , Population Density , Sexual Behavior, Animal , Sexual Maturation , Symbiosis , Tephritidae/growth & development , Tephritidae/microbiology
13.
New Phytol ; 191(2): 555-563, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21449951

ABSTRACT

Competing evolutionary forces shape plant breeding systems (e.g. inbreeding depression, reproductive assurance). Which of these forces prevails in a given population or species is predicted to depend upon such factors as life history, ecological conditions, and geographical context. Here, we examined two such predictions: that self-compatibility should be associated with the annual life history or extreme climatic conditions. We analyzed data from a clade of plants remarkable for variation in breeding system, life history and climatic conditions (Oenothera, sections Anogra and Kleinia, Onagraceae). We used a phylogenetic comparative approach and Bayesian or hybrid Bayesian tests to account for phylogenetic uncertainty. Geographic information system (GIS)-based climate data and ecological niche modeling allowed us to quantify climatic conditions. Breeding system and reproductive life span are not correlated in Anogra and Kleinia. Instead, self-compatibility is associated with the extremes of temperature in the coldest part of the year and precipitation in the driest part of the year. In the 60 yr since this pattern was anticipated, this is the first demonstration of a relationship between the evolution of self-compatibility and climatic extremes. We discuss possible explanations for this pattern and possible implications with respect to anthropogenic climate change.


Subject(s)
Adaptation, Biological/physiology , Oenothera biennis/physiology , Adaptation, Biological/genetics , Bayes Theorem , Biodiversity , Biological Evolution , Climate , Ecosystem , Geography , Inbreeding , Oenothera biennis/genetics , Phylogeny , Reproduction/genetics
14.
BMC Plant Biol ; 10: 110, 2010 Jun 16.
Article in English | MEDLINE | ID: mdl-20550711

ABSTRACT

BACKGROUND: In flowering plants, the female gametophyte is typically a seven-celled structure with four cell types: the egg cell, the central cell, the synergid cells, and the antipodal cells. These cells perform essential functions required for double fertilization and early seed development. Differentiation of these distinct cell types likely involves coordinated changes in gene expression regulated by transcription factors. Therefore, understanding female gametophyte cell differentiation and function will require dissection of the gene regulatory networks operating in each of the cell types. These efforts have been hampered because few transcription factor genes expressed in the female gametophyte have been identified. To identify such genes, we undertook a large-scale differential expression screen followed by promoter-fusion analysis to detect transcription-factor genes transcribed in the Arabidopsis female gametophyte. RESULTS: Using quantitative reverse-transcriptase PCR, we analyzed 1,482 Arabidopsis transcription-factor genes and identified 26 genes exhibiting reduced mRNA levels in determinate infertile 1 mutant ovaries, which lack female gametophytes, relative to ovaries containing female gametophytes. Spatial patterns of gene transcription within the mature female gametophyte were identified for 17 transcription-factor genes using promoter-fusion analysis. Of these, ten genes were predominantly expressed in a single cell type of the female gametophyte including the egg cell, central cell and the antipodal cells whereas the remaining seven genes were expressed in two or more cell types. After fertilization, 12 genes were transcriptionally active in the developing embryo and/or endosperm. CONCLUSIONS: We have shown that our quantitative reverse-transcriptase PCR differential-expression screen is sufficiently sensitive to detect transcription-factor genes transcribed in the female gametophyte. Most of the genes identified in this study have not been reported previously as being expressed in the female gametophyte. Therefore, they might represent novel regulators and provide entry points for reverse genetic and molecular approaches to uncover the gene regulatory networks underlying female gametophyte development.


Subject(s)
Arabidopsis/genetics , Ovule/genetics , Transcription Factors/genetics , Arabidopsis/growth & development , Endosperm/genetics , Endosperm/growth & development , Gene Expression Profiling , Genes, Plant , Mutation , Plants, Genetically Modified/genetics , Plants, Genetically Modified/growth & development , Promoter Regions, Genetic , RNA, Plant/genetics , Reverse Transcriptase Polymerase Chain Reaction
15.
Appl Environ Microbiol ; 75(22): 7097-106, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19767463

ABSTRACT

As polyphagous, holometabolous insects, tephritid fruit flies (Diptera: Tephritidae) provide a unique habitat for endosymbiotic bacteria, especially those microbes associated with the digestive system. Here we examine the endosymbiont of the olive fly [Bactrocera oleae (Rossi) (Diptera: Tephritidae)], a tephritid of great economic importance. "Candidatus Erwinia dacicola" was found in the digestive systems of all life stages of wild olive flies from the southwestern United States. PCR and microscopy demonstrated that "Ca. Erwinia dacicola" resided intracellularly in the gastric ceca of the larval midgut but extracellularly in the lumen of the foregut and ovipositor diverticulum of adult flies. "Ca. Erwinia dacicola" is one of the few nonpathogenic endosymbionts that transitions between intracellular and extracellular lifestyles during specific stages of the host's life cycle. Another unique feature of the olive fly endosymbiont is that unlike obligate endosymbionts of monophagous insects, "Ca. Erwinia dacicola" has a G+C nucleotide composition similar to those of closely related plant-pathogenic and free-living bacteria. These two characteristics of "Ca. Erwinia dacicola," the ability to transition between intracellular and extracellular lifestyles and a G+C nucleotide composition similar to those of free-living relatives, may facilitate survival in a changing environment during the development of a polyphagous, holometabolous host. We propose that insect-bacterial symbioses should be classified based on the environment that the host provides to the endosymbiont (the endosymbiont environment).


Subject(s)
Erwinia/physiology , Extracellular Space/microbiology , Intracellular Space/microbiology , Symbiosis , Tephritidae/microbiology , Animals , Bacterial Outer Membrane Proteins/genetics , Base Composition , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Erwinia/classification , Erwinia/genetics , In Situ Hybridization, Fluorescence , Larva/microbiology , Molecular Sequence Data , Phylogeny , RNA, Ribosomal, 16S/genetics , Rec A Recombinases/genetics , Southwestern United States
16.
Evolution ; 63(2): 498-513, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19154361

ABSTRACT

Using an explicit phylogenetic framework, ontogenetic patterns of leaf form are compared among the three genera of marsileaceous ferns (Marsilea, Regnellidium, and Pilularia) with the outgroup Asplenium to address the hypothesis that heterochrony played a role in their evolution. We performed a Fourier analysis on a developmental sequence of leaves from individuals of these genera. Principal components analysis of the harmonic coefficients was used to characterize the ontogenetic trajectories of leaf form in a smaller dimensional space. Results of this study suggest that the "evolutionary juvenilization" observed in these leaf sequences is best described using a mixed model of heterochrony (accelerated growth rate and early termination at a simplified leaf form). The later stages of the ancestral, more complex, ontogenetic pattern were lost in Marsileaceae, giving rise to the simplified adult leaves of Marsilea, Regnellidium, and Pilularia. Life-history traits such as ephemeral and uncertain habitats, high reproductive rates, and accelerated maturation, which are typical for marsileaceous ferns, suggest that they may be "r strategists." The evidence for heterochrony presented here illustrates that it has resulted in profound ecological and morphological consequences for the entire life history of Marsileaceae.


Subject(s)
Biological Evolution , Marsileaceae/anatomy & histology , Marsileaceae/genetics , Models, Genetic , Plant Leaves/anatomy & histology , Phylogeny
17.
Am J Bot ; 96(11): 1941-56, 2009 Nov.
Article in English | MEDLINE | ID: mdl-21622314

ABSTRACT

The architecture of flowering plants is astonishingly diverse. To understand evolutionary patterns and processes that account for this diversity, I investigated developmental anatomy of storage roots and stems of 58 species in the genus Adenia (Passifloraceae) using an explicit phylogenetic context. Because expanded storage roots and stem succulence evolved multiple times in Adenia, patterns of transition between succulent and nonsucculent forms were analyzed using a comparative test that accommodates phylogenetic uncertainty. I tested the innervation hypothesis, wherein I expected the evolution of vascular strands to be correlated with evolutionary increases in water storage tissue if evolution of vascular strands facilitates transport through water and starch storage structures. Not only is evolution of vascular strands in stems statistically coupled with evolutionary increases in parenchyma storage tissue, most lineages that evolved expanded storage roots also evolved vascular strands in these roots in parallel to succulent stems. I proposed that vascular strands and closely associated storage parenchyma found in both roots and shoots of Adenia comprise a homologous unit. A switch-like evolutionary mechanism that alters the spatial expression of this unit between roots and shoots can account, in large part, for transitions between markedly different habits such as storage-rooted herbs and succulent-stemmed shrubs.

18.
Syst Biol ; 55(5): 803-17, 2006 Oct.
Article in English | MEDLINE | ID: mdl-17060201

ABSTRACT

The ancestral distance test is introduced to detect correlated evolution between two binary traits in large phylogenies that may lack resolved subclades, branch lengths, and/or comparative data. We define the ancestral distance as the time separating a randomly sampled taxon from its most recent ancestor (MRA) with extant descendants that have an independent trait. The sampled taxon either has (target sample) or lacks (nontarget sample) a dependent trait. Modeled as a Markov process, we show that the distribution of ancestral distances for the target sample is identical to that of the nontarget sample when characters are uncorrelated, whereas ancestral distances are smaller on average for the target sample when characters are correlated. Simulations suggest that the ancestral distance can be estimated using the time, total branch length, taxonomic rank, or number of speciation events between a sampled taxon and the MRA. These results are shown to be robust to deviations from Markov assumptions. A Monte Carlo technique estimates P-values when fully resolved phylogenies with branch lengths are available, and we evaluate the Monte Carlo approach using a data set with known correlation. Measures of relatedness were found to provide a robust means to test hypotheses of correlated character evolution.


Subject(s)
Classification/methods , Phylogeny , Computer Simulation , Plants/classification , Software
19.
Evolution ; 59(9): 1914-27, 2005 Sep.
Article in English | MEDLINE | ID: mdl-16261729

ABSTRACT

Evolutionary ecologists have long sought to understand the conditions under which perennial (iteroparous) versus annual (semelparous) plant life histories are favored. We evaluated the idea that aridity and variation in the length of droughts should favor the evolution of an annual life history, both by decreasing adult survival and by increasing the potential for high seedling survival via reduced plant cover. We calculated phylogenetically independent contrasts of climate with respect to life history in a clade of winter-establishing evening primroses (sections Anogra and Kleinia; Oenothera; Onagraceae), which includes seven annuals, 12 perennials, and two variable taxa. Climate variables were quantified from long-term records at weather stations near collection localities. To explicitly account for phylogenetic uncertainty, contrasts were calculated on a random sample of phylogenetic trees from the posterior distribution of a Bayesian analysis of DNA sequence data. Statements of association are based on comparing the per-tree mean contrast, which has a null expectation of zero, to a set of per-tree mean contrasts calculated on the same trees, after randomizing the climate data. As predicted, increased annual aridity, increased annual potential evapotranspiration, and decreased annual precipitation were associated with transitions to the annual habit, but these trends were not significantly different from the null pattern. Transitions to the annual habit were not significantly associated with increases in one measure of aridity in summer nor with increased summer drought, but they were associated with significantly increased maximum summer temperatures. In winter, increased aridity and decreased precipitation were significantly associated with transitions to the annual habit. Changes in life history were not significantly associated with changes in the coefficient of variation of precipitation, either on an annual or seasonal (summer vs. winter) basis. Though we cannot attribute causality on the basis of a correlational, historical study, our results are consistent with the idea that increased heat and drought at certain times of the year favor the evolution of the annual habit. Increased heat in summer may cause adult survival to decline, while increased aridity and decreased precipitation in the season of seedling recruitment (winter) may favor a drought-avoiding, short-lived annual strategy. Not all of the predicted patterns were observed: the capability for drought-induced dormancy may preclude change in habit in response to summer drought in our study group.


Subject(s)
Climate , Oenothera/genetics , Phylogeny , Base Sequence , Bayes Theorem , DNA Primers , Longevity , Models, Genetic , Molecular Sequence Data , North America , Reproduction/genetics , Seasons , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...