Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Exp Bot ; 75(7): 2046-2063, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38217537

ABSTRACT

Duckweeds span 36 species of free-floating aquatic organisms with body sizes ranging from 2 mm to 10 mm, where each plant body plan is reduced to a largely leaf-like structure. As an emerging crop, their fast growth rates offer potential for cultivation in closed systems. We describe a novel UK collection derived from low light (dLL) or high light (dHL) habitats, profiled for growth, photosynthesis, and photoprotection (non-photochemical quenching, NPQ) responses. Twenty-three accessions of three Lemna species and one Spirodela polyrhiza were grown under relatively low light (LL: 100 µmol m-2 s-1) and high light (HL: 350 µmol m-2 s-1) intensities. We observed broad within- and between-species level variation in photosynthesis acclimation. Duckweeds grown under HL exhibited a lower growth rate, biomass, chlorophyll, and quantum yield of photosynthesis. In HL compared with LL, carotenoid de-epoxidation state and NPQ were higher, whilst PSII efficiency (φPSII) and Chl a:b ratios were unchanged. The dLL plants showed relatively stronger acclimation to HL compared with dHL plants, especially Lemna japonica accessions. These achieved faster growth in HL with concurrent higher carotenoid levels and NPQ, and less degradation of chlorophyll. We conclude that these data support local adaptation to the light environment in duckweed affecting acclimation in controlled conditions.


Subject(s)
Light , Photosynthesis , Photosynthesis/physiology , Chlorophyll/metabolism , Adaptation, Physiological , Biomass , Carotenoids/metabolism , Photosystem II Protein Complex/metabolism , Plant Leaves/metabolism
2.
Genome Res ; 30(4): 553-565, 2020 04.
Article in English | MEDLINE | ID: mdl-32269134

ABSTRACT

Recent progress has been made in identifying genomic regions implicated in trait evolution on a microevolutionary scale in many species, but whether these are relevant over macroevolutionary time remains unclear. Here, we directly address this fundamental question using bird beak shape, a key evolutionary innovation linked to patterns of resource use, divergence, and speciation, as a model trait. We integrate class-wide geometric-morphometric analyses with evolutionary sequence analyses of 10,322 protein-coding genes as well as 229,001 genomic regions spanning 72 species. We identify 1434 protein-coding genes and 39,806 noncoding regions for which molecular rates were significantly related to rates of bill shape evolution. We show that homologs of the identified protein-coding genes as well as genes in close proximity to the identified noncoding regions are involved in craniofacial embryo development in mammals. They are associated with embryonic stem cell pathways, including BMP and Wnt signaling, both of which have repeatedly been implicated in the morphological development of avian beaks. This suggests that identifying genotype-phenotype association on a genome-wide scale over macroevolutionary time is feasible. Although the coding and noncoding gene sets are associated with similar pathways, the actual genes are highly distinct, with significantly reduced overlap between them and bill-related phenotype associations specific to noncoding loci. Evidence for signatures of recent diversifying selection on our identified noncoding loci in Darwin finch populations further suggests that regulatory rather than coding changes are major drivers of morphological diversification over macroevolutionary times.


Subject(s)
Beak/anatomy & histology , Biological Evolution , Birds/anatomy & histology , Birds/genetics , Genetic Association Studies , Morphogenesis/genetics , Untranslated Regions , Animals , Conserved Sequence , Evolution, Molecular , Genetic Heterogeneity , Open Reading Frames , Quantitative Trait Loci , Selection, Genetic
3.
Commun Biol ; 1: 22, 2018.
Article in English | MEDLINE | ID: mdl-30271909

ABSTRACT

High sunlight can raise plant growth rates but can potentially cause cellular damage. The likelihood of deleterious effects is lowered by a sophisticated set of photoprotective mechanisms, one of the most important being the controlled dissipation of energy from chlorophyll within photosystem II (PSII) measured as non-photochemical quenching (NPQ). Although ubiquitous, the role of NPQ in plant productivity remains uncertain because it momentarily reduces the quantum efficiency of photosynthesis. Here we used plants overexpressing the gene encoding a central regulator of NPQ, the protein PsbS, within a major crop species (rice)  to assess the effect of photoprotection at the whole canopy scale. We accounted for canopy light interception, to our knowledge for the first time in this context. We show that in comparison to wild-type plants, psbS overexpressors increased canopy radiation use efficiency and grain yield in fluctuating light, demonstrating that photoprotective mechanisms should be altered to improve rice crop productivity.

SELECTION OF CITATIONS
SEARCH DETAIL
...