Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Pharmaceutics ; 14(11)2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36432660

ABSTRACT

Lipidic nanoparticles (LNP), particularly liposomes, have been proven to be a successful and versatile platform for intracellular drug delivery for decades. Whilst primarily developed for small molecule delivery, liposomes have recently undergone a renaissance due to their success in vaccination strategies, delivering nucleic acids, in the COVID-19 pandemic. As such, liposomes are increasingly being investigated for the delivery of nucleic acids, beyond mRNA, as non-viral gene delivery vectors. Although not generally considered toxic, liposomes are increasingly shown to not be immunologically inert, which may have advantages in vaccine applications but may limit their use in other conditions where immunological responses may lead to adverse events, particularly those associated with complement activation. We sought to assess a small panel of liposomes varying in a number of physico-chemical characteristics associated with complement activation and inflammatory responses, and examine how basophil-like cells may respond to them. Basophils, as well as other cell types, are involved in the anaphylactic responses to liposomes but are difficult to isolate in sufficient numbers to conduct large scale analysis. Here, we report the use of the human KU812 cell line as a surrogate for primary basophils. Multiple phenotypic markers of activation were assessed, as well as the release of histamine and inflammasome activity within the cells. We found that larger liposomes were more likely to result in KU812 activation, and that non-PEGylated liposomes were potent stimulators of inflammasome activity (four-fold greater IL-1ß secretion than untreated controls), and a lower ratio of cholesterol to lipid was also associated with greater IL-1ß secretion ([Cholesterol:DSPC ratio] 1:10; 0.35 pg/mL IL-1ß vs. 5:10; 0.1 pg/mL). Additionally, PEGylation appeared to be associated with direct KU812 activation. These results suggest possible mechanisms related to the consequences of complement activation that may be underpinned by basophilic cells, in addition to other immune cell types. Investigation of the mechanisms behind these responses, and their impact on use in vivo, are now warranted.

2.
Biomed Pharmacother ; 150: 112999, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35461087

ABSTRACT

SLC2A1 mediates glucose cellular uptake; key to appropriate immune function. Our previous work has shown efavirenz and lopinavir exposure inhibits T cell and macrophage responses, to known agonists, likely via interactions with glucose transporters. Using human cell lines as a model, we assessed glucose uptake and subsequent bioenergetic profiles, linked to immunological responses. Glucose uptake was measured using 2-deoxyglucose as a surrogate for endogenous glucose, using commercially available reagents. mRNA expression of SLC transporters was investigated using qPCR TaqMan™ gene expression assay. Bioenergetic assessment, on THP-1 cells, utilised the Agilent Seahorse XF Mito Stress test. In silico analysis of potential interactions between SLC2A1 and antiretrovirals was investigated using bioinformatic techniques. Efavirenz and lopinavir exposure was associated with significantly lower glucose accumulation, most notably in THP-1 cells (up to 90% lower and 70% lower with efavirenz and lopinavir, respectively). Bioenergetic assessment showed differences in the rate of ATP production (JATP); efavirenz (4 µg/mL), was shown to reduce JATP by 87% whereas lopinavir (10 µg/mL), was shown to increase the overall JATP by 77%. Putative in silico analysis indicated the antiretrovirals, apart from efavirenz, associated with the binding site of highest binding affinity to SLC2A1, similar to that of glucose. Our data suggest a role for efavirenz and lopinavir in the alteration of glucose accumulation with subsequent alteration of bioenergetic profiles, supporting our hypothesis for their inhibitory effect on immune cell activation. Clarification of the implications of this data, for in vivo immunological responses, is now warranted to define possible consequences for these, and similar, therapeutics.


Subject(s)
Anti-HIV Agents , HIV Infections , Adenosine Triphosphate , Alkynes/therapeutic use , Anti-HIV Agents/pharmacology , Benzoxazines/pharmacology , Cyclopropanes , Energy Metabolism , Glucose/therapeutic use , Glucose Transporter Type 1/genetics , HIV Infections/drug therapy , Humans , Lopinavir/pharmacology , Ritonavir
SELECTION OF CITATIONS
SEARCH DETAIL
...