Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Eur J Hum Genet ; 28(8): 1066-1077, 2020 08.
Article in English | MEDLINE | ID: mdl-32238909

ABSTRACT

Next generation sequencing provides an important opportunity for improved diagnosis in epilepsy. To date, the majority of diagnostic genetic testing is conducted in the paediatric arena, while the utility of such testing is less well understood in adults with epilepsy. We conducted whole exome sequencing (WES) and copy number variant analyses in an Irish cohort of 101 people with epilepsy and co-morbid intellectual disability to compare the diagnostic yield of genomic testing between adult and paediatric patients. Variant interpretation followed American College of Medical Genetics and Genomics (ACMG) guidelines. We demonstrate that WES, in combination with array-comparative genomic hybridisation, provides a diagnostic rate of 27% in unrelated adult epilepsy patients and 42% in unrelated paediatric patients. We observe a 2.7% rate of ACMG-defined incidental findings. Our findings indicate that WES has similar utility in both adult and paediatric cohorts and is appropriate for diagnostic testing in both epilepsy patient groups.


Subject(s)
Epilepsy/genetics , Genetic Testing/methods , Intellectual Disability/genetics , Adolescent , Adult , Child , Child, Preschool , Comorbidity , Comparative Genomic Hybridization/methods , Comparative Genomic Hybridization/standards , Epilepsy/diagnosis , Epilepsy/epidemiology , Female , Genetic Testing/standards , Humans , Infant , Intellectual Disability/diagnosis , Intellectual Disability/epidemiology , Male , Middle Aged , Mutation , Sensitivity and Specificity , Exome Sequencing/methods , Exome Sequencing/standards
2.
Epilepsia Open ; 4(4): 563-571, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31819912

ABSTRACT

OBJECTIVE: Clinical and genetic predictors of response to antiepileptic drugs (AEDs) are largely unknown. We examined predictors of lacosamide response in a real-world clinical setting. METHODS: We tested the association of clinical predictors with treatment response using regression modeling in a cohort of people with refractory epilepsy. Genetic assessment for lacosamide response was conducted via genome-wide association studies and exome studies, comprising 281 candidate genes. RESULTS: Most patients (479/483) were treated with LCM in addition to other AEDs. Our results corroborate previous findings that patients with refractory genetic generalized epilepsy (GGE) may respond to treatment with LCM. No clear clinical predictors were identified. We then compared 73 lacosamide responders, defined as those experiencing greater than 75% seizure reduction or seizure freedom, to 495 nonresponders (<25% seizure reduction). No variants reached the genome-wide significance threshold in our case-control analysis. SIGNIFICANCE: No genetic predictor of lacosamide response was identified. Patients with refractory GGE might benefit from treatment with lacosamide.

3.
Epilepsia ; 60(8): 1670-1677, 2019 08.
Article in English | MEDLINE | ID: mdl-31297800

ABSTRACT

OBJECTIVES: Both clinical genomics and e-Health technology are changing the way medicine is being practiced. Although the basic clinical methodology of good medical care will remain unchanged, the combined power of genomics and electronic health records has the capability of enhancing, and in some cases transforming, the practice of medicine. This is particularly true in the care of patients with complex long-term medical conditions such as chronic refractory epilepsy, especially in those with related complex comorbidities including intellectual disability and psychiatric disease. METHODS: Herein we outline the development and integration of an epilepsy genomics module into a preexisting epilepsy electronic patient record (EPR) system. RESULTS: We describe how this EPR infrastructure is used to facilitate discussion at multidisciplinary clinical meetings around molecular diagnosis and resulting changes in management. SIGNIFICANCE: This work illustrates the role of eHealth technology in embedding genomics into the clinical pathway.


Subject(s)
Electronic Health Records , Epilepsy/genetics , Genomics , Epilepsy/therapy , Genomics/methods , Humans , Interdisciplinary Communication , Pedigree , Phenotype , Photography
4.
Epilepsia ; 59(7): 1410-1420, 2018 07.
Article in English | MEDLINE | ID: mdl-29901232

ABSTRACT

OBJECTIVE: There is little detailed phenotypic characterization of bilateral hippocampal sclerosis (HS). We therefore conducted a multicenter review of people with pharmacoresistant epilepsy and bilateral HS to better determine their clinical characteristics. METHODS: Databases from 11 EPIGEN centers were searched. For identified cases, clinicians reviewed the medical notes, imaging, and electroencephalographic (EEG), video-EEG, and neuropsychometric data. Data were irretrievably anonymized, and a single database was populated to capture all phenotypic information. These data were compared with phenotyped cases of unilateral HS from the same centers. RESULTS: In total, 96 patients with pharmacoresistant epilepsy and bilateral HS were identified (43 female, 53 male; age range = 8-80 years). Twenty-five percent had experienced febrile convulsions, and 27% of patients had experienced status epilepticus. The mean number of previously tried antiepileptic drugs was 5.32, and the average number of currently prescribed medications was 2.99; 44.8% of patients had cognitive difficulties, and 47.9% had psychiatric comorbidity; 35.4% (34/96) of patients continued with long-term medical therapy alone, another 4 being seizure-free on medication. Sixteen patients proceeded to, or were awaiting, neurostimulation, and 11 underwent surgical resection. One patient was rendered seizure-free postresection, with an improvement in seizures for 3 other cases. By comparison, of 201 patients with unilateral HS, a significantly higher number (44.3%) had febrile convulsions and only 11.4% had experienced status epilepticus. Importantly, 41.8% (84/201) of patients with unilateral HS had focal aware seizures, whereas such seizures were less frequently observed in people with bilateral HS, and were never observed exclusively (P = .002; Fisher's exact test). SIGNIFICANCE: The current work describes the phenotypic spectrum of people with pharmacoresistant epilepsy and bilateral HS, highlights salient clinical differences from patients with unilateral HS, and provides a large platform from which to develop further studies, both epidemiological and genomic, to better understand etiopathogenesis and optimal treatment regimes in this condition.


Subject(s)
Dominance, Cerebral/physiology , Drug Resistant Epilepsy/physiopathology , Epilepsies, Partial/physiopathology , Hippocampus/pathology , Phenotype , Status Epilepticus/physiopathology , Adolescent , Adult , Aged , Aged, 80 and over , Child , Drug Resistant Epilepsy/diagnosis , Epilepsies, Partial/diagnosis , Epilepsies, Partial/surgery , Female , Hippocampus/surgery , Humans , Male , Middle Aged , Prognosis , Risk Factors , Sclerosis , Status Epilepticus/diagnosis , Status Epilepticus/surgery , Young Adult
5.
Epilepsia ; 56(5): 685-91, 2015 May.
Article in English | MEDLINE | ID: mdl-25880994

ABSTRACT

OBJECTIVES: To describe the antiepileptic drug (AED) treatment of patients with early infantile epileptic encephalopathy due to KCNQ2 mutations during the neonatal phase and the first year of life. METHODS: We identified 15 patients and reviewed the electroclinical, neuroimaging, and AED treatment data. RESULTS: Seizure onset was between 1 and 4 days of age with daily tonic asymmetric, focal and clonic seizures in nine patients and status epilepticus in the remaining six. Electroencephalography (EEG) showed multifocal epileptiform abnormalities in nine patients and a burst-suppression pattern in six. All patients were trialed with adequate daily doses of several AEDs before they reached seizure freedom. Six patients (40%) achieved seizure control within 2 weeks of carbamazepine (CBZ) administration and five (33%) were seizure-free with phenytoin (PHT). The last four patients (27%) were successfully treated with topiramate (TPM) (two patients), levetiracetam (LEV) (one), and a combination of LEV with TPM (one). Most patients reached seizure freedom within the first year of life and remained seizure-free thereafter. Twelve patients had moderate-to-severe developmental delay at follow-up. However, the two patients whose seizures ceased within a few days of onset showed only mild cognitive impairment. SIGNIFICANCE: Our findings suggest that drugs acting on sodium channels including CBZ and PHT should be considered as first-line treatment in patients with KCNQ2 encephalopathy. Voltage-gated sodium and potassium channels co-localize at the neuronal membrane. Therefore, the efficacy of drugs acting as sodium-channel blockers could be linked to their modulating effect on both channels. The type of KCNQ2 mutation might influence AED response as well as developmental outcome. Early recognition of KCNQ2 encephalopathy followed by the most appropriate and effective treatment may be important for reducing the neurodevelopmental impairment associated with this disorder.


Subject(s)
Anticonvulsants/therapeutic use , Epilepsy/drug therapy , Epilepsy/genetics , KCNQ2 Potassium Channel/genetics , Mutation/genetics , Child , Child, Preschool , Cognition Disorders/etiology , Electroencephalography , Epilepsy/complications , Female , Humans , Infant , Male , Movement Disorders/etiology , Neuroimaging , Pharmacogenetics , Retrospective Studies
6.
Neurology ; 84(9): 951-8, 2015 Mar 03.
Article in English | MEDLINE | ID: mdl-25672921

ABSTRACT

OBJECTIVE: To delineate the phenotype of early childhood epileptic encephalopathy due to de novo mutations of CHD2, which encodes the chromodomain helicase DNA binding protein 2. METHODS: We analyzed the medical history, MRI, and video-EEG recordings of 9 individuals with de novo CHD2 mutations and one with a de novo 15q26 deletion encompassing CHD2. RESULTS: Seizures began at a mean of 26 months (12-42) with myoclonic seizures in all 10 cases. Seven exhibited exquisite clinical photosensitivity; 6 self-induced with the television. Absence seizures occurred in 9 patients including typical (4), atypical (2), and absence seizures with eyelid myoclonias (4). Generalized tonic-clonic seizures occurred in 9 of 10 cases with a mean onset of 5.8 years. Convulsive and nonconvulsive status epilepticus were later features (6/10, mean onset 9 years). Tonic (40%) and atonic (30%) seizures also occurred. In 3 cases, an unusual seizure type, the atonic-myoclonic-absence was captured on video. A phenotypic spectrum was identified with 7 cases having moderate to severe intellectual disability and refractory seizures including tonic attacks. Their mean age at onset was 23 months. Three cases had a later age at onset (34 months) with relative preservation of intellect and an initial response to antiepileptic medication. CONCLUSION: The phenotypic spectrum of CHD2 encephalopathy has distinctive features of myoclonic epilepsy, marked clinical photosensitivity, atonic-myoclonic-absence, and intellectual disability ranging from mild to severe. Recognition of this genetic entity will permit earlier diagnosis and enable the development of targeted therapies.


Subject(s)
DNA-Binding Proteins/genetics , Epilepsies, Myoclonic/diagnosis , Epilepsies, Myoclonic/genetics , Photic Stimulation/adverse effects , Seizures/diagnosis , Seizures/genetics , Adolescent , Adult , Child , Cohort Studies , Epilepsies, Myoclonic/physiopathology , Female , Humans , Male , Seizures/physiopathology , Young Adult
7.
Hum Mol Genet ; 23(12): 3200-11, 2014 Jun 15.
Article in English | MEDLINE | ID: mdl-24463883

ABSTRACT

In severe early-onset epilepsy, precise clinical and molecular genetic diagnosis is complex, as many metabolic and electro-physiological processes have been implicated in disease causation. The clinical phenotypes share many features such as complex seizure types and developmental delay. Molecular diagnosis has historically been confined to sequential testing of candidate genes known to be associated with specific sub-phenotypes, but the diagnostic yield of this approach can be low. We conducted whole-genome sequencing (WGS) on six patients with severe early-onset epilepsy who had previously been refractory to molecular diagnosis, and their parents. Four of these patients had a clinical diagnosis of Ohtahara Syndrome (OS) and two patients had severe non-syndromic early-onset epilepsy (NSEOE). In two OS cases, we found de novo non-synonymous mutations in the genes KCNQ2 and SCN2A. In a third OS case, WGS revealed paternal isodisomy for chromosome 9, leading to identification of the causal homozygous missense variant in KCNT1, which produced a substantial increase in potassium channel current. The fourth OS patient had a recessive mutation in PIGQ that led to exon skipping and defective glycophosphatidyl inositol biosynthesis. The two patients with NSEOE had likely pathogenic de novo mutations in CBL and CSNK1G1, respectively. Mutations in these genes were not found among 500 additional individuals with epilepsy. This work reveals two novel genes for OS, KCNT1 and PIGQ. It also uncovers unexpected genetic mechanisms and emphasizes the power of WGS as a clinical tool for making molecular diagnoses, particularly for highly heterogeneous disorders.


Subject(s)
Epilepsy/genetics , Epilepsy/pathology , Membrane Proteins/genetics , Nerve Tissue Proteins/genetics , Potassium Channels/genetics , Child , Child, Preschool , Chromosomes, Human, Pair 9 , Epilepsy/diagnosis , Genetic Predisposition to Disease , Genome-Wide Association Study , High-Throughput Nucleotide Sequencing , Humans , KCNQ2 Potassium Channel/genetics , Male , Mutation , NAV1.2 Voltage-Gated Sodium Channel/genetics , Pathology, Molecular , Potassium Channels, Sodium-Activated , Proto-Oncogene Proteins c-cbl/genetics , Uniparental Disomy , Young Adult
8.
Neurology ; 81(19): 1697-703, 2013 Nov 05.
Article in English | MEDLINE | ID: mdl-24107868

ABSTRACT

OBJECTIVES: To determine the frequency of KCNQ2 mutations in patients with neonatal epileptic encephalopathy (NEE), and to expand the phenotypic spectrum of KCNQ2 epileptic encephalopathy. METHODS: Eighty-four patients with unexplained NEE were screened for KCNQ2 mutations using classic Sanger sequencing. Clinical data of 6 additional patients with KCNQ2 mutations detected by gene panel were collected. Detailed phenotyping was performed with particular attention to seizure frequency, cognitive outcome, and video-EEG. RESULTS: In the cohort, we identified 9 different heterozygous de novo KCNQ2 missense mutations in 11 of 84 patients (13%). Two of 6 missense mutations detected by gene panel were recurrent and present in patients of the cohort. Seizures at onset typically consisted of tonic posturing often associated with focal clonic jerking, and were accompanied by apnea with desaturation. One patient diagnosed by gene panel had seizure onset at the age of 5 months. Based on seizure frequency at onset and cognitive outcome, we delineated 3 clinical subgroups, expanding the spectrum of KCNQ2 encephalopathy to patients with moderate intellectual disability and/or infrequent seizures at onset. Recurrent mutations lead to relatively homogenous phenotypes. One patient responded favorably to retigabine; 5 patients had a good response to carbamazepine. In 6 patients, seizures with bradycardia were recorded. One patient died of probable sudden unexpected death in epilepsy. CONCLUSION: KCNQ2 mutations cause approximately 13% of unexplained NEE. Patients present with a wide spectrum of severity and, although rare, infantile epilepsy onset is possible.


Subject(s)
Genetic Predisposition to Disease/genetics , KCNQ2 Potassium Channel/genetics , Mutation/genetics , Spasms, Infantile/genetics , Cohort Studies , DNA Mutational Analysis , Electroencephalography , Female , Humans , Infant , Male , Video Recording
9.
Nat Genet ; 45(7): 825-30, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23708187

ABSTRACT

Epileptic encephalopathies are a devastating group of epilepsies with poor prognosis, of which the majority are of unknown etiology. We perform targeted massively parallel resequencing of 19 known and 46 candidate genes for epileptic encephalopathy in 500 affected individuals (cases) to identify new genes involved and to investigate the phenotypic spectrum associated with mutations in known genes. Overall, we identified pathogenic mutations in 10% of our cohort. Six of the 46 candidate genes had 1 or more pathogenic variants, collectively accounting for 3% of our cohort. We show that de novo CHD2 and SYNGAP1 mutations are new causes of epileptic encephalopathies, accounting for 1.2% and 1% of cases, respectively. We also expand the phenotypic spectra explained by SCN1A, SCN2A and SCN8A mutations. To our knowledge, this is the largest cohort of cases with epileptic encephalopathies to undergo targeted resequencing. Implementation of this rapid and efficient method will change diagnosis and understanding of the molecular etiologies of these disorders.


Subject(s)
DNA Mutational Analysis/methods , DNA-Binding Proteins/genetics , Epilepsy/genetics , Mutation , ras GTPase-Activating Proteins/genetics , Adolescent , Adult , Child , Child, Preschool , Cohort Studies , Epilepsy/diagnosis , Epilepsy/epidemiology , Female , Genetic Predisposition to Disease/genetics , Humans , Male , Mutation/physiology , Young Adult
10.
Nat Genet ; 44(9): 1030-4, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22842232

ABSTRACT

Alternating hemiplegia of childhood (AHC) is a rare, severe neurodevelopmental syndrome characterized by recurrent hemiplegic episodes and distinct neurological manifestations. AHC is usually a sporadic disorder and has unknown etiology. We used exome sequencing of seven patients with AHC and their unaffected parents to identify de novo nonsynonymous mutations in ATP1A3 in all seven individuals. In a subsequent sequence analysis of ATP1A3 in 98 other patients with AHC, we found that ATP1A3 mutations were likely to be responsible for at least 74% of the cases; we also identified one inherited mutation in a case of familial AHC. Notably, most AHC cases are caused by one of seven recurrent ATP1A3 mutations, one of which was observed in 36 patients. Unlike ATP1A3 mutations that cause rapid-onset dystonia-parkinsonism, AHC-causing mutations in this gene caused consistent reductions in ATPase activity without affecting the level of protein expression. This work identifies de novo ATP1A3 mutations as the primary cause of AHC and offers insight into disease pathophysiology by expanding the spectrum of phenotypes associated with mutations in ATP1A3.


Subject(s)
Hemiplegia/genetics , Mutation , Sodium-Potassium-Exchanging ATPase/genetics , Adult , Animals , COS Cells , Child , Chlorocebus aethiops , Family , Female , Genetic Predisposition to Disease , HeLa Cells , High-Throughput Nucleotide Sequencing , Humans , Male , Models, Biological , Mutation/physiology , Pedigree , Protein Structure, Secondary , Sodium-Potassium-Exchanging ATPase/chemistry , Sodium-Potassium-Exchanging ATPase/physiology
11.
Appl Environ Microbiol ; 76(11): 3529-37, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20400565

ABSTRACT

It is well established that the glutamate decarboxylase (GAD) system is central to the survival of Listeria monocytogenes at low pH, both in acidic foods and within the mammalian stomach. The accepted model proposes that under acidic conditions extracellular glutamate is transported into the cell in exchange for an intracellular gamma-aminobutyrate (GABA(i)). The glutamate is then decarboxylated to GABA(i), a reaction that consumes a proton, thereby helping to prevent acidification of the cytoplasm. In this study, we show that glutamate supplementation had no influence on either growth rate at pH 5.0 or survival at pH 2.5 when L. monocytogenes 10403S was grown in a chemically defined medium (DM). In response to acidification, cells grown in DM failed to efflux GABA, even when glutamate was added to the medium. In contrast, in brain heart infusion (BHI), the same strain produced significant extracellular GABA (GABA(e)) in response to acidification. In addition, high levels of GABA(i) (>80 mM) were found in the cytoplasm in response to low pH in both growth media. Medium-swap and medium-mixing experiments revealed that the GABA efflux apparatus was nonfunctional in DM, even when glutamate was present. It was also found that the GadT2D2 antiporter/decarboxylase system was transcribed poorly in DM-grown cultures while overexpression of gadD1T1 and gadD3 occurred in response to pH 3.5. Interestingly, BHI-grown cells did not respond with upregulation of any of the GAD system genes when challenged at pH 3.5. The accumulation of GABA(i) in cells grown in DM in the absence of extracellular glutamate indicates that intracellular glutamate is the source of the GABA(i). These results demonstrate that GABA production can be uncoupled from GABA efflux, a finding that alters the way we should view the operation of bacterial GAD systems.


Subject(s)
Culture Media/chemistry , Cytosol/chemistry , Listeria monocytogenes/physiology , Stress, Physiological , gamma-Aminobutyric Acid/metabolism , Glutamic Acid/metabolism , Hydrogen-Ion Concentration , Listeria monocytogenes/growth & development , Listeria monocytogenes/metabolism , Microbial Viability
SELECTION OF CITATIONS
SEARCH DETAIL
...