Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
Cereb Cortex ; 34(2)2024 01 31.
Article in English | MEDLINE | ID: mdl-38204296

ABSTRACT

The hippocampal-entorhinal system uses cognitive maps to represent spatial knowledge and other types of relational information. However, objects can often be characterized by different types of relations simultaneously. How does the hippocampal formation handle the embedding of stimuli in multiple relational structures that differ vastly in their mode and timescale of acquisition? Does the hippocampal formation integrate different stimulus dimensions into one conjunctive map or is each dimension represented in a parallel map? Here, we reanalyzed human functional magnetic resonance imaging data from Garvert et al. (2017) that had previously revealed a map in the hippocampal formation coding for a newly learnt transition structure. Using functional magnetic resonance imaging adaptation analysis, we found that the degree of representational similarity in the bilateral hippocampus also decreased as a function of the semantic distance between presented objects. Importantly, while both map-like structures localized to the hippocampal formation, the semantic map was located in more posterior regions of the hippocampal formation than the transition structure and thus anatomically distinct. This finding supports the idea that the hippocampal-entorhinal system forms parallel cognitive maps that reflect the embedding of objects in diverse relational structures.


Subject(s)
Hippocampus , Learning , Humans , Magnetic Resonance Imaging , Semantics , Cognition
2.
Behav Res Methods ; 56(3): 1583-1603, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37095326

ABSTRACT

To study visual and semantic object representations, the need for well-curated object concepts and images has grown significantly over the past years. To address this, we have previously developed THINGS, a large-scale database of 1854 systematically sampled object concepts with 26,107 high-quality naturalistic images of these concepts. With THINGSplus, we significantly extend THINGS by adding concept- and image-specific norms and metadata for all 1854 concepts and one copyright-free image example per concept. Concept-specific norms were collected for the properties of real-world size, manmadeness, preciousness, liveliness, heaviness, naturalness, ability to move or be moved, graspability, holdability, pleasantness, and arousal. Further, we provide 53 superordinate categories as well as typicality ratings for all their members. Image-specific metadata includes a nameability measure, based on human-generated labels of the objects depicted in the 26,107 images. Finally, we identified one new public domain image per concept. Property (M = 0.97, SD = 0.03) and typicality ratings (M = 0.97, SD = 0.01) demonstrate excellent consistency, with the subsequently collected arousal ratings as the only exception (r = 0.69). Our property (M = 0.85, SD = 0.11) and typicality (r = 0.72, 0.74, 0.88) data correlated strongly with external norms, again with the lowest validity for arousal (M = 0.41, SD = 0.08). To summarize, THINGSplus provides a large-scale, externally validated extension to existing object norms and an important extension to THINGS, allowing detailed selection of stimuli and control variables for a wide range of research interested in visual object processing, language, and semantic memory.


Subject(s)
Language , Metadata , Humans , Semantics , Memory , Databases, Factual
3.
bioRxiv ; 2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37745325

ABSTRACT

Our visual world consists of an immense number of unique objects and yet, we are easily able to identify, distinguish, interact, and reason about the things we see within several hundred milliseconds. This requires that we flexibly integrate and focus on different object properties to support specific behavioral goals. In the current study, we examined how these rich object representations unfold in the human brain by modelling time-resolved MEG signals evoked by viewing thousands of objects. Using millions of behavioral judgments to guide our understanding of the neural representation of the object space, we find distinct temporal profiles across the object dimensions. These profiles fell into two broad types with either a distinct and early peak (~150 ms) or a slow rise to a late peak (~300 ms). Further, the early effects are stable across participants in contrast to later effects which show more variability across people. This highlights that early peaks may carry stimulus-specific and later peaks subject-specific information. Given that the dimensions with early peaks seem to be primarily visual dimensions and those with later peaks more conceptual, our results suggest that conceptual processing is more variable across people. Together, these data provide a comprehensive account of how a variety of object properties unfold in the human brain and contribute to the rich nature of object vision.

4.
Sci Adv ; 9(17): eadd2981, 2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37126552

ABSTRACT

What makes certain images more memorable than others? While much of memory research has focused on participant effects, recent studies using a stimulus-centric perspective have sparked debate on the determinants of memory, including the roles of semantic and visual features and whether the most prototypical or atypical items are best remembered. Prior studies have typically relied on constrained stimulus sets, limiting a generalized view of the features underlying what we remember. Here, we collected more than 1 million memory ratings for a naturalistic dataset of 26,107 object images designed to comprehensively sample concrete objects. We establish a model of object features that is predictive of image memorability and examined whether memorability could be accounted for by the typicality of the objects. We find that semantic features exert a stronger influence than perceptual features on what we remember and that the relationship between memorability and typicality is more complex than a simple positive or negative association alone.

5.
Sci Rep ; 13(1): 5171, 2023 03 30.
Article in English | MEDLINE | ID: mdl-36997625

ABSTRACT

Understanding actions performed by others requires us to integrate different types of information about people, scenes, objects, and their interactions. What organizing dimensions does the mind use to make sense of this complex action space? To address this question, we collected intuitive similarity judgments across two large-scale sets of naturalistic videos depicting everyday actions. We used cross-validated sparse non-negative matrix factorization to identify the structure underlying action similarity judgments. A low-dimensional representation, consisting of nine to ten dimensions, was sufficient to accurately reconstruct human similarity judgments. The dimensions were robust to stimulus set perturbations and reproducible in a separate odd-one-out experiment. Human labels mapped these dimensions onto semantic axes relating to food, work, and home life; social axes relating to people and emotions; and one visual axis related to scene setting. While highly interpretable, these dimensions did not share a clear one-to-one correspondence with prior hypotheses of action-relevant dimensions. Together, our results reveal a low-dimensional set of robust and interpretable dimensions that organize intuitive action similarity judgments and highlight the importance of data-driven investigations of behavioral representations.


Subject(s)
Pattern Recognition, Visual , Semantics , Humans , Judgment , Emotions , Human Activities
6.
Elife ; 122023 02 27.
Article in English | MEDLINE | ID: mdl-36847339

ABSTRACT

Understanding object representations requires a broad, comprehensive sampling of the objects in our visual world with dense measurements of brain activity and behavior. Here, we present THINGS-data, a multimodal collection of large-scale neuroimaging and behavioral datasets in humans, comprising densely sampled functional MRI and magnetoencephalographic recordings, as well as 4.70 million similarity judgments in response to thousands of photographic images for up to 1,854 object concepts. THINGS-data is unique in its breadth of richly annotated objects, allowing for testing countless hypotheses at scale while assessing the reproducibility of previous findings. Beyond the unique insights promised by each individual dataset, the multimodality of THINGS-data allows combining datasets for a much broader view into object processing than previously possible. Our analyses demonstrate the high quality of the datasets and provide five examples of hypothesis-driven and data-driven applications. THINGS-data constitutes the core public release of the THINGS initiative (https://things-initiative.org) for bridging the gap between disciplines and the advancement of cognitive neuroscience.


Subject(s)
Brain , Pattern Recognition, Visual , Humans , Reproducibility of Results , Pattern Recognition, Visual/physiology , Brain/diagnostic imaging , Magnetoencephalography/methods , Magnetic Resonance Imaging/methods , Brain Mapping/methods
7.
Cognition ; 234: 105368, 2023 05.
Article in English | MEDLINE | ID: mdl-36641868

ABSTRACT

Near-scale environments, like work desks, restaurant place settings or lab benches, are the interface of our hand-based interactions with the world. How are our conceptual representations of these environments organized? What properties distinguish among reachspaces, and why? We obtained 1.25 million similarity judgments on 990 reachspace images, and generated a 30-dimensional embedding which accurately predicts these judgments. Examination of the embedding dimensions revealed key properties underlying these judgments, such as reachspace layout, affordance, and visual appearance. Clustering performed over the embedding revealed four distinct interpretable classes of reachspaces, distinguishing among spaces related to food, electronics, analog activities, and storage or display. Finally, we found that reachspace similarity ratings were better predicted by the function of the spaces than their locations, suggesting that reachspaces are largely conceptualized in terms of the actions they support. Altogether, these results reveal the behaviorally-relevant principles that structure our internal representations of reach-relevant environments.


Subject(s)
Brain Mapping , Pattern Recognition, Visual , Humans , Brain Mapping/methods , Judgment , Food , Hand
8.
J Neurosci ; 43(3): 484-500, 2023 01 18.
Article in English | MEDLINE | ID: mdl-36535769

ABSTRACT

Drawings offer a simple and efficient way to communicate meaning. While line drawings capture only coarsely how objects look in reality, we still perceive them as resembling real-world objects. Previous work has shown that this perceived similarity is mirrored by shared neural representations for drawings and natural images, which suggests that similar mechanisms underlie the recognition of both. However, other work has proposed that representations of drawings and natural images become similar only after substantial processing has taken place, suggesting distinct mechanisms. To arbitrate between those alternatives, we measured brain responses resolved in space and time using fMRI and MEG, respectively, while human participants (female and male) viewed images of objects depicted as photographs, line drawings, or sketch-like drawings. Using multivariate decoding, we demonstrate that object category information emerged similarly fast and across overlapping regions in occipital, ventral-temporal, and posterior parietal cortex for all types of depiction, yet with smaller effects at higher levels of visual abstraction. In addition, cross-decoding between depiction types revealed strong generalization of object category information from early processing stages on. Finally, by combining fMRI and MEG data using representational similarity analysis, we found that visual information traversed similar processing stages for all types of depiction, yet with an overall stronger representation for photographs. Together, our results demonstrate broad commonalities in the neural dynamics of object recognition across types of depiction, thus providing clear evidence for shared neural mechanisms underlying recognition of natural object images and abstract drawings.SIGNIFICANCE STATEMENT When we see a line drawing, we effortlessly recognize it as an object in the world despite its simple and abstract style. Here we asked to what extent this correspondence in perception is reflected in the brain. To answer this question, we measured how neural processing of objects depicted as photographs and line drawings with varying levels of detail (from natural images to abstract line drawings) evolves over space and time. We find broad commonalities in the spatiotemporal dynamics and the neural representations underlying the perception of photographs and even abstract drawings. These results indicate a shared basic mechanism supporting recognition of drawings and natural images.


Subject(s)
Pattern Recognition, Visual , Visual Perception , Humans , Male , Female , Pattern Recognition, Visual/physiology , Photic Stimulation/methods , Visual Perception/physiology , Magnetic Resonance Imaging/methods , Parietal Lobe/physiology , Brain Mapping/methods
9.
Neuroimage ; 257: 119294, 2022 08 15.
Article in English | MEDLINE | ID: mdl-35580810

ABSTRACT

Representational Similarity Analysis (RSA) has emerged as a popular method for relating representational spaces from human brain activity, behavioral data, and computational models. RSA is based on the comparison of representational (dis-)similarity matrices (RDMs or RSMs), which characterize the pairwise (dis-)similarities of all conditions across all features (e.g. fMRI voxels or units of a model). However, classical RSA treats each feature as equally important. This 'equal weights' assumption contrasts with the flexibility of multivariate decoding, which reweights individual features for predicting a target variable. As a consequence, classical RSA may lead researchers to underestimate the correspondence between a model and a brain region and, in case of model comparison, may lead them to select an inferior model. The aim of this work is twofold: First, we sought to broadly test feature-reweighted RSA (FR-RSA) applied to computational models and reveal the extent to which reweighting model features improves RSM correspondence and affects model selection. Previous work suggested that reweighting can improve model selection in RSA but it has remained unclear to what extent these results generalize across datasets and data modalities. To draw more general conclusions, we utilized a range of publicly available datasets and three popular deep neural networks (DNNs). Second, we propose voxel-reweighted RSA, a novel use case of FR-RSA that reweights fMRI voxels, mirroring the rationale of multivariate decoding of optimally combining voxel activity patterns. We found that reweighting individual model units markedly improved the fit between model RSMs and target RSMs derived from several fMRI and behavioral datasets and affected model selection, highlighting the importance of considering FR-RSA. For voxel-reweighted RSA, improvements in RSM correspondence were even more pronounced, demonstrating the utility of this novel approach. We additionally show that classical noise ceilings can be exceeded when FR-RSA is applied and propose an updated approach for their computation. Taken together, our results broadly validate the use of FR-RSA for improving the fit between computational models, brain, and behavioral data, allowing us to better adjudicate between competing computational models. Further, our results suggest that FR-RSA applied to brain measurement channels could become an important new method to assess the correspondence between representational spaces.


Subject(s)
Brain Mapping , Brain , Brain/diagnostic imaging , Brain Mapping/methods , Computer Simulation , Humans , Magnetic Resonance Imaging/methods
10.
J Vis ; 22(2): 4, 2022 02 01.
Article in English | MEDLINE | ID: mdl-35129578

ABSTRACT

Line drawings convey meaning with just a few strokes. Despite strong simplifications, humans can recognize objects depicted in such abstracted images without effort. To what degree do deep convolutional neural networks (CNNs) mirror this human ability to generalize to abstracted object images? While CNNs trained on natural images have been shown to exhibit poor classification performance on drawings, other work has demonstrated highly similar latent representations in the networks for abstracted and natural images. Here, we address these seemingly conflicting findings by analyzing the activation patterns of a CNN trained on natural images across a set of photographs, drawings, and sketches of the same objects and comparing them to human behavior. We find a highly similar representational structure across levels of visual abstraction in early and intermediate layers of the network. This similarity, however, does not translate to later stages in the network, resulting in low classification performance for drawings and sketches. We identified that texture bias in CNNs contributes to the dissimilar representational structure in late layers and the poor performance on drawings. Finally, by fine-tuning late network layers with object drawings, we show that performance can be largely restored, demonstrating the general utility of features learned on natural images in early and intermediate layers for the recognition of drawings. In conclusion, generalization to abstracted images, such as drawings, seems to be an emergent property of CNNs trained on natural images, which is, however, suppressed by domain-related biases that arise during later processing stages in the network.


Subject(s)
Neural Networks, Computer , Visual Perception , Concept Formation , Humans , Learning , Recognition, Psychology , Visual Perception/physiology
11.
Sci Data ; 9(1): 3, 2022 01 10.
Article in English | MEDLINE | ID: mdl-35013331

ABSTRACT

The neural basis of object recognition and semantic knowledge has been extensively studied but the high dimensionality of object space makes it challenging to develop overarching theories on how the brain organises object knowledge. To help understand how the brain allows us to recognise, categorise, and represent objects and object categories, there is a growing interest in using large-scale image databases for neuroimaging experiments. In the current paper, we present THINGS-EEG, a dataset containing human electroencephalography responses from 50 subjects to 1,854 object concepts and 22,248 images in the THINGS stimulus set, a manually curated and high-quality image database that was specifically designed for studying human vision. The THINGS-EEG dataset provides neuroimaging recordings to a systematic collection of objects and concepts and can therefore support a wide array of research to understand visual object processing in the human brain.


Subject(s)
Brain/physiology , Electroencephalography , Recognition, Psychology , Visual Perception , Adolescent , Adult , Female , Humans , Male , Semantics , Young Adult
12.
Front Neuroinform ; 15: 679838, 2021.
Article in English | MEDLINE | ID: mdl-34630062

ABSTRACT

Over the past decade, deep neural network (DNN) models have received a lot of attention due to their near-human object classification performance and their excellent prediction of signals recorded from biological visual systems. To better understand the function of these networks and relate them to hypotheses about brain activity and behavior, researchers need to extract the activations to images across different DNN layers. The abundance of different DNN variants, however, can often be unwieldy, and the task of extracting DNN activations from different layers may be non-trivial and error-prone for someone without a strong computational background. Thus, researchers in the fields of cognitive science and computational neuroscience would benefit from a library or package that supports a user in the extraction task. THINGSvision is a new Python module that aims at closing this gap by providing a simple and unified tool for extracting layer activations for a wide range of pretrained and randomly-initialized neural network architectures, even for users with little to no programming experience. We demonstrate the general utility of THINGsvision by relating extracted DNN activations to a number of functional MRI and behavioral datasets using representational similarity analysis, which can be performed as an integral part of the toolbox. Together, THINGSvision enables researchers across diverse fields to extract features in a streamlined manner for their custom image dataset, thereby improving the ease of relating DNNs, brain activity, and behavior, and improving the reproducibility of findings in these research fields.

13.
Elife ; 102021 05 18.
Article in English | MEDLINE | ID: mdl-34003108

ABSTRACT

Topographic maps are a fundamental feature of cortex architecture in the mammalian brain. One common theory is that the de-differentiation of topographic maps links to impairments in everyday behavior due to less precise functional map readouts. Here, we tested this theory by characterizing de-differentiated topographic maps in primary somatosensory cortex (SI) of younger and older adults by means of ultra-high resolution functional magnetic resonance imaging together with perceptual finger individuation and hand motor performance. Older adults' SI maps showed similar amplitude and size to younger adults' maps, but presented with less representational similarity between distant fingers. Larger population receptive field sizes in older adults' maps did not correlate with behavior, whereas reduced cortical distances between D2 and D3 related to worse finger individuation but better motor performance. Our data uncover the drawbacks of a simple de-differentiation model of topographic map function, and motivate the introduction of feature-based models of cortical reorganization.


Subject(s)
Brain Mapping/methods , Hand , Magnetic Resonance Imaging/methods , Somatosensory Cortex/physiology , Adult , Age Factors , Brain Mapping/instrumentation , Female , Humans , Male , Physical Stimulation , Young Adult
14.
Nat Hum Behav ; 4(11): 1173-1185, 2020 11.
Article in English | MEDLINE | ID: mdl-33046861

ABSTRACT

Objects can be characterized according to a vast number of possible criteria (such as animacy, shape, colour and function), but some dimensions are more useful than others for making sense of the objects around us. To identify these core dimensions of object representations, we developed a data-driven computational model of similarity judgements for real-world images of 1,854 objects. The model captured most explainable variance in similarity judgements and produced 49 highly reproducible and meaningful object dimensions that reflect various conceptual and perceptual properties of those objects. These dimensions predicted external categorization behaviour and reflected typicality judgements of those categories. Furthermore, humans can accurately rate objects along these dimensions, highlighting their interpretability and opening up a way to generate similarity estimates from object dimensions alone. Collectively, these results demonstrate that human similarity judgements can be captured by a fairly low-dimensional, interpretable embedding that generalizes to external behaviour.


Subject(s)
Color Perception/physiology , Concept Formation/physiology , Form Perception/physiology , Judgment/physiology , Models, Theoretical , Pattern Recognition, Visual/physiology , Adult , Humans
16.
NPJ Sci Learn ; 5: 7, 2020.
Article in English | MEDLINE | ID: mdl-32550003

ABSTRACT

Performance improvements during early human motor skill learning are suggested to be driven by short periods of rest during practice, at the scale of seconds. To reveal the unknown mechanisms behind these "micro-offline" gains, we leveraged the sampling power offered by online crowdsourcing (cumulative N over all experiments = 951). First, we replicated the original in-lab findings, demonstrating generalizability to subjects learning the task in their daily living environment (N = 389). Second, we show that offline improvements during rest are equivalent when significantly shortening practice period duration, thus confirming that they are not a result of recovery from performance fatigue (N = 118). Third, retroactive interference immediately after each practice period reduced the learning rate relative to interference after passage of time (N = 373), indicating stabilization of the motor memory at a microscale of several seconds. Finally, we show that random termination of practice periods did not impact offline gains, ruling out a contribution of predictive motor slowing (N = 71). Altogether, these results demonstrate that micro-offline gains indicate rapid, within-seconds consolidation accounting for early skill learning.

17.
PLoS One ; 14(10): e0223792, 2019.
Article in English | MEDLINE | ID: mdl-31613926

ABSTRACT

In recent years, the use of a large number of object concepts and naturalistic object images has been growing strongly in cognitive neuroscience research. Classical databases of object concepts are based mostly on a manually curated set of concepts. Further, databases of naturalistic object images typically consist of single images of objects cropped from their background, or a large number of naturalistic images of varying quality, requiring elaborate manual image curation. Here we provide a set of 1,854 diverse object concepts sampled systematically from concrete picturable and nameable nouns in the American English language. Using these object concepts, we conducted a large-scale web image search to compile a database of 26,107 high-quality naturalistic images of those objects, with 12 or more object images per concept and all images cropped to square size. Using crowdsourcing, we provide higher-level category membership for the 27 most common categories and validate them by relating them to representations in a semantic embedding derived from large text corpora. Finally, by feeding images through a deep convolutional neural network, we demonstrate that they exhibit high selectivity for different object concepts, while at the same time preserving variability of different object images within each concept. Together, the THINGS database provides a rich resource of object concepts and object images and offers a tool for both systematic and large-scale naturalistic research in the fields of psychology, neuroscience, and computer science.


Subject(s)
Crowdsourcing/methods , Databases, Factual , Concept Formation , Data Curation , Deep Learning , Humans , Neural Networks, Computer
18.
Elife ; 72018 01 31.
Article in English | MEDLINE | ID: mdl-29384473

ABSTRACT

Despite the importance of an observer's goals in determining how a visual object is categorized, surprisingly little is known about how humans process the task context in which objects occur and how it may interact with the processing of objects. Using magnetoencephalography (MEG), functional magnetic resonance imaging (fMRI) and multivariate techniques, we studied the spatial and temporal dynamics of task and object processing. Our results reveal a sequence of separate but overlapping task-related processes spread across frontoparietal and occipitotemporal cortex. Task exhibited late effects on object processing by selectively enhancing task-relevant object features, with limited impact on the overall pattern of object representations. Combining MEG and fMRI data, we reveal a parallel rise in task-related signals throughout the cerebral cortex, with an increasing dominance of task over object representations from early to higher visual areas. Collectively, our results reveal the complex dynamics underlying task and object representations throughout human cortex.


Subject(s)
Behavior , Cerebral Cortex/physiology , Goals , Pattern Recognition, Visual , Work , Brain Mapping , Humans , Magnetic Resonance Imaging , Magnetoencephalography , Spatio-Temporal Analysis
19.
Neuroimage ; 180(Pt A): 4-18, 2018 10 15.
Article in English | MEDLINE | ID: mdl-28782682

ABSTRACT

Multivariate decoding methods were developed originally as tools to enable accurate predictions in real-world applications. The realization that these methods can also be employed to study brain function has led to their widespread adoption in the neurosciences. However, prior to the rise of multivariate decoding, the study of brain function was firmly embedded in a statistical philosophy grounded on univariate methods of data analysis. In this way, multivariate decoding for brain interpretation grew out of two established frameworks: multivariate decoding for predictions in real-world applications, and classical univariate analysis based on the study and interpretation of brain activation. We argue that this led to two confusions, one reflecting a mixture of multivariate decoding for prediction or interpretation, and the other a mixture of the conceptual and statistical philosophies underlying multivariate decoding and classical univariate analysis. Here we attempt to systematically disambiguate multivariate decoding for the study of brain function from the frameworks it grew out of. After elaborating these confusions and their consequences, we describe six, often unappreciated, differences between classical univariate analysis and multivariate decoding. We then focus on how the common interpretation of what is signal and noise changes in multivariate decoding. Finally, we use four examples to illustrate where these confusions may impact the interpretation of neuroimaging data. We conclude with a discussion of potential strategies to help resolve these confusions in interpreting multivariate decoding results, including the potential departure from multivariate decoding methods for the study of brain function.


Subject(s)
Brain Mapping/methods , Brain/physiology , Image Processing, Computer-Assisted/methods , Multivariate Analysis , Humans
20.
Neuroimage ; 180(Pt A): 19-30, 2018 10 15.
Article in English | MEDLINE | ID: mdl-29288130

ABSTRACT

Standard neuroimaging data analysis based on traditional principles of experimental design, modelling, and statistical inference is increasingly complemented by novel analysis methods, driven e.g. by machine learning methods. While these novel approaches provide new insights into neuroimaging data, they often have unexpected properties, generating a growing literature on possible pitfalls. We propose to meet this challenge by adopting a habit of systematic testing of experimental design, analysis procedures, and statistical inference. Specifically, we suggest to apply the analysis method used for experimental data also to aspects of the experimental design, simulated confounds, simulated null data, and control data. We stress the importance of keeping the analysis method the same in main and test analyses, because only this way possible confounds and unexpected properties can be reliably detected and avoided. We describe and discuss this Same Analysis Approach in detail, and demonstrate it in two worked examples using multivariate decoding. With these examples, we reveal two sources of error: A mismatch between counterbalancing (crossover designs) and cross-validation which leads to systematic below-chance accuracies, and linear decoding of a nonlinear effect, a difference in variance.


Subject(s)
Neuroimaging/methods , Neuroimaging/standards , Brain/physiology , Humans , Multivariate Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...