Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 9933, 2023 06 19.
Article in English | MEDLINE | ID: mdl-37336945

ABSTRACT

Cold-water coral (CWC) reefs of the Angolan margin (SE Atlantic) are dominated by Desmophyllum pertusum and support a diverse community of associated fauna, despite hypoxic conditions. In this study, we use carbon and nitrogen stable isotope analyses (δ13C and δ15N) to decipher the trophic network of this relatively unknown CWC province. Although fresh phytodetritus is available to the reef, δ15N signatures indicate that CWCs (12.90 ± 1.00 ‰) sit two trophic levels above Suspended Particulate Organic Matter (SPOM) (4.23 ± 1.64 ‰) suggesting that CWCs are highly reliant on an intermediate food source, which may be zooplankton. Echinoderms and the polychaete Eunice norvegica occupy the same trophic guild, with high δ13C signatures (-14.00 ± 1.08 ‰) pointing to a predatory feeding behavior on CWCs and sponges, although detrital feeding on 13C enriched particles might also be important for this group. Sponges presented the highest δ15N values (20.20 ± 1.87 ‰), which could be due to the role of the sponge holobiont and bacterial food in driving intense nitrogen cycling processes in sponges' tissue, helping to cope with the hypoxic conditions of the reef. Our study provides first insights to understand trophic interactions of CWC reefs under low-oxygen conditions.


Subject(s)
Anthozoa , Coral Reefs , Animals , Ecology , Water , Nitrogen Isotopes , Carbon Isotopes/analysis
2.
PLoS Biol ; 20(5): e3001628, 2022 05.
Article in English | MEDLINE | ID: mdl-35587463

ABSTRACT

Cold-water corals (CWCs) are the engineers of complex ecosystems forming unique biodiversity hotspots in the deep sea. They are expected to suffer dramatically from future environmental changes in the oceans such as ocean warming, food depletion, deoxygenation, and acidification. However, over the last decades of intense deep-sea research, no extinction event of a CWC ecosystem is documented, leaving quite some uncertainty on their sensitivity to these environmental parameters. Paleoceanographic reconstructions offer the opportunity to align the on- and offsets of CWC proliferation to environmental parameters. Here, we present the synthesis of 6 case studies from the North Atlantic Ocean and the Mediterranean Sea, revealing that food supply controlled by export production and turbulent hydrodynamics at the seabed exerted the strongest impact on coral vitality during the past 20,000 years, whereas locally low oxygen concentrations in the bottom water can act as an additional relevant stressor. The fate of CWCs in a changing ocean will largely depend on how these oceanographic processes will be modulated. Future ocean deoxygenation may be compensated regionally where the food delivery and food quality are optimal.


Subject(s)
Anthozoa , Animals , Biodiversity , Ecosystem , Oceans and Seas , Seawater , Water
3.
Sci Rep ; 11(1): 15170, 2021 07 26.
Article in English | MEDLINE | ID: mdl-34312452

ABSTRACT

This study aims to map the occurrence and distribution of Madrepora oculata and to quantify density and colony sizes across recently discovered coral mounds off Angola. Despite the fact that the Angolan populations of M. oculata thrive under extreme hypoxic conditions within the local oxygen minimum zone, they reveal colonies with remarkable heights of up to 1250 mm-which are the tallest colonies ever recorded for this species-and average densities of 0.53 ± 0.37 (SD) colonies m-2. This is particularly noteworthy as these values are comparable to those documented in areas without any oxygen constraints. The results of this study show that the distribution pattern documented for M. oculata appear to be linked to the specific regional environmental conditions off Angola, which have been recorded in the direct vicinity of the thriving coral community. Additionally, an estimated average colony age of 95 ± 76 (SD) years (total estimated age range: 16-369 years) indicates relatively old M. oculata populations colonizing the Angolan coral mounds. Finally, the characteristics of the Angolan populations are benchmarked and discussed in the light of the existing knowledge on M. oculata gained from the North Atlantic and Mediterranean Sea.

4.
Glob Chang Biol ; 26(4): 2181-2202, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32077217

ABSTRACT

The deep sea plays a critical role in global climate regulation through uptake and storage of heat and carbon dioxide. However, this regulating service causes warming, acidification and deoxygenation of deep waters, leading to decreased food availability at the seafloor. These changes and their projections are likely to affect productivity, biodiversity and distributions of deep-sea fauna, thereby compromising key ecosystem services. Understanding how climate change can lead to shifts in deep-sea species distributions is critically important in developing management measures. We used environmental niche modelling along with the best available species occurrence data and environmental parameters to model habitat suitability for key cold-water coral and commercially important deep-sea fish species under present-day (1951-2000) environmental conditions and to project changes under severe, high emissions future (2081-2100) climate projections (RCP8.5 scenario) for the North Atlantic Ocean. Our models projected a decrease of 28%-100% in suitable habitat for cold-water corals and a shift in suitable habitat for deep-sea fishes of 2.0°-9.9° towards higher latitudes. The largest reductions in suitable habitat were projected for the scleractinian coral Lophelia pertusa and the octocoral Paragorgia arborea, with declines of at least 79% and 99% respectively. We projected the expansion of suitable habitat by 2100 only for the fishes Helicolenus dactylopterus and Sebastes mentella (20%-30%), mostly through northern latitudinal range expansion. Our results projected limited climate refugia locations in the North Atlantic by 2100 for scleractinian corals (30%-42% of present-day suitable habitat), even smaller refugia locations for the octocorals Acanella arbuscula and Acanthogorgia armata (6%-14%), and almost no refugia for P. arborea. Our results emphasize the need to understand how anticipated climate change will affect the distribution of deep-sea species including commercially important fishes and foundation species, and highlight the importance of identifying and preserving climate refugia for a range of area-based planning and management tools.

5.
Proc Natl Acad Sci U S A ; 116(47): 23455-23460, 2019 11 19.
Article in English | MEDLINE | ID: mdl-31685605

ABSTRACT

The southern westerly wind belt (SWW) interacts with the Antarctic Circumpolar Current and strongly impacts the Southern Ocean carbon budget, and Antarctic ice-sheet dynamics across glacial-interglacial cycles. We investigated precipitation-driven sediment input changes to the Southeast Pacific off the southern margin of the Atacama Desert over the past one million years, revealing strong precession (19/23-ka) cycles. Our simulations with 2 ocean-atmosphere general circulation models suggest that observed cyclic rainfall changes are linked to meridional shifts in water vapor transport from the tropical Pacific toward the southern Atacama Desert. These changes reflect a precessional modulation of the split in the austral winter South Pacific jet stream. For precession maxima, we infer significantly enhanced rainfall in the southern Atacama Desert due to a stronger South Pacific split jet with enhanced subtropical/subpolar jets, and a weaker midlatitude jet. Conversely, we derive dry conditions in northern Chile related to reduced subtropical/subpolar jets and an enhanced midlatitude jet for precession minima. The presence of precessional cycles in the Pacific SWW, and lack thereof in other basins, indicate that orbital-scale changes of the SWW were not zonally homogeneous across the Southern Hemisphere, in contrast to the hemispherewide shifts of the SWW suggested for glacial terminations. The strengthening of the jet is unique to the South Pacific realm and might have affected winter-controlled changes in the mixed layer depth, the formation of intermediate water, and the buildup of sea-ice around Antarctica, with implications for the global overturning circulation and the oceanic storage of atmospheric CO2.

6.
Sci Rep ; 6: 35925, 2016 11 04.
Article in English | MEDLINE | ID: mdl-27811961

ABSTRACT

Submarine slope failures are a likely cause for tsunami generation along the East Coast of the United States. Among potential source areas for such tsunamis are submarine landslides and margin collapses of Bahamian platforms. Numerical models of past events, which have been identified using high-resolution multibeam bathymetric data, reveal possible tsunami impact on Bimini, the Florida Keys, and northern Cuba. Tsunamis caused by slope failures with terminal landslide velocity of 20 ms-1 will either dissipate while traveling through the Straits of Florida, or generate a maximum wave of 1.5 m at the Florida coast. Modeling a worst-case scenario with a calculated terminal landslide velocity generates a wave of 4.5 m height. The modeled margin collapse in southwestern Great Bahama Bank potentially has a high impact on northern Cuba, with wave heights between 3.3 to 9.5 m depending on the collapse velocity. The short distance and travel time from the source areas to densely populated coastal areas would make the Florida Keys and Miami vulnerable to such low-probability but high-impact events.

7.
Springerplus ; 4: 69, 2015.
Article in English | MEDLINE | ID: mdl-25853024

ABSTRACT

In order to assess the changes in sea-surface hydrology and productivity signal from the last glacial to the Holocene; a set of isotopic, geochemical and microgranulometric proxies was used for this study. Former studies revealed that the reconstruction of paleoproductivity from ocean sediment gives different results depending the measurement used. The comparison between our productivity proxies (total organic carbon, carbonate and planktonic δ(13)C) as well as previous results in nearby location indicates that the planktonic δ(13)C responds better to marine productivity changes and represents therefore a suitable proxy for paleoproductivity reconstruction in our studied area. The productivity signal reveals two main enrichments during the Young Dryas (YD) and the Heinrich Event 1 (HE 1) and correlates perfectly with upwelling activity mentioned by an increasing trend of aeolian proxies. In addition, our results show that biogenic components in the sediment have a marine origin and the proportion of organic matter preserved depends on the total sediment accumulation rate.

8.
Science ; 304(5679): 1959-62, 2004 Jun 25.
Article in English | MEDLINE | ID: mdl-15218147

ABSTRACT

Marine sediments from the Chilean continental margin are used to infer millennial-scale changes in southeast Pacific surface ocean water properties and Patagonian ice sheet extent since the last glacial period. Our data show a clear "Antarctic" timing of sea surface temperature changes, which appear systematically linked to meridional displacements in sea ice, westerly winds, and the circumpolar current system. Proxy data for ice sheet changes show a similar pattern as oceanographic variations offshore, but reveal a variable glacier-response time of up to approximately 1000 years, which may explain some of the current discrepancies among terrestrial records in southern South America.

9.
Environ Sci Technol ; 37(21): 4848-54, 2003 Nov 01.
Article in English | MEDLINE | ID: mdl-14620809

ABSTRACT

Atom ratios of 240Pu to 239Pu in bottom sediments from the Fram Strait are used to provide evidence for the long distance dispersion of Pu in the Arctic Ocean. In particular, low (<0.18) 240Pu/239Pu ratios indicate that plutonium from sources in the Kara Sea and Novaya Zemlya is transported across the basin toward the North Atlantic. The results have implications for the ability of sea ice to incorporate, intercept, and transport contaminants in the Arctic Ocean. They demonstrate that the fates of sea ice and associated contaminants in the Arctic Ocean are closely coupled, with the release of the particulate load and associated chemical species occurring in principal sea ice ablation areas such as the Fram Strait.


Subject(s)
Ice , Plutonium/analysis , Seawater/chemistry , Water Pollutants, Radioactive/analysis , Arctic Regions , Environmental Monitoring , Geologic Sediments/chemistry , Water Movements
SELECTION OF CITATIONS
SEARCH DETAIL
...