Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Prep Biochem Biotechnol ; 53(5): 511-522, 2023.
Article in English | MEDLINE | ID: mdl-35981094

ABSTRACT

L-asparaginase (ASNase) is an efficient inhibitor of tumor development, used in chemotherapy sessions against acute lymphoblastic leukemia (ALL) tumor cells; its use results in 80% complete remission of the disease in treated patients. Saccharomyces cerevisiae's L-asparaginase II (ScASNaseII) has a high potential to substitute bacteria ASNase in patients that developed hypersensitivity, but the endogenous production of it results in hypermannosylated immunogenic enzyme. Here we describe the genetic process to acquire the ScASNaseII expressed in the extracellular medium. Our strategy involved a fusion of mature sequence of protein codified by ASP3 (amino acids 26-362) with the secretion signal sequence of Pichia pastoris acid phosphatase enzyme; in addition, this DNA construction was integrated in P. pastoris Glycoswitch® strain genome, which has the cellular machinery to express and secrete high quantity of enzymes with humanized glycosylation. Our data show that the DNA construction and strain employed can express extracellular asparaginase with specific activity of 218.2 IU mg-1. The resultant enzyme is 40% more stable than commercially available Escherichia coli's ASNase (EcASNaseII) when incubated with human serum. In addition, ScASNaseII presents 50% lower cross-reaction with anti-ASNase antibody produced against EcASNaseII when compared with ASNase from Dickeya chrysanthemi.


Subject(s)
Antineoplastic Agents , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Saccharomyces , Humans , Asparaginase/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Antineoplastic Agents/pharmacology
2.
Nanomedicine (Lond) ; 16(9): 741-758, 2021 04.
Article in English | MEDLINE | ID: mdl-33856243

ABSTRACT

Aim: The low solubility and consequent poor bioavailability of ibuprofen (IBU) is a major drawback that can be overcome by anchoring IBU on ultrasmall superparamagnetic iron oxide nanoparticles (USPIONs) as effective multifunctional carriers for drug delivery. Methods: USPIONs were conjugated with glycerol phosphate (USPION-GP) and also co-conjugated with IBU (USPION-GP/IBU), and their in vivo toxicity and anti-inflammatory effects investigated. Phosphate buffer saline (control), IBU, USPION-GP and USPION-GP/IBU were intravenously administered 15 min before lipopolysaccharide-induced peritonitis in male Balb/c mice. Results: 4 h later, USPION bioconjugates did not appear to have caused toxicity to blood leukocytes or caused alterations in the spleen, liver or kidneys. Also, they inhibited lipopolysaccharide-induced neutrophil mobilization into the peritoneum. Conclusion: The absence of systemic toxicity and the unexpected anti-inflammatory action of USPION bioconjugates indicates that they could be a novel and effective approach to administer IBU and warrant further investigation.


Subject(s)
Ibuprofen , Magnetic Iron Oxide Nanoparticles , Animals , Anti-Inflammatory Agents/toxicity , Anti-Inflammatory Agents, Non-Steroidal/toxicity , Biological Availability , Ibuprofen/toxicity , Male , Mice , Solubility
3.
Biochem Pharmacol ; 182: 114230, 2020 12.
Article in English | MEDLINE | ID: mdl-32979352

ABSTRACT

L-asparaginase (ASNase) from Escherichia coli (EcAII) is used in the treatment of acute lymphoblastic leukaemia (ALL). EcAII activity in vivo has been described to be influenced by the human lysosomal proteases asparaginyl endopeptidase (AEP) and cathepsin B (CTSB); these hydrolases cleave and could expose epitopes associated with the immune response against EcAII. In this work, we show that ASNase resistance to CTSB and/or AEP influences the formation of anti-ASNase antibodies, one of the main causes of hypersensitivity reactions in patients. Error-prone polymerase chain reaction was used to produce variants of EcAII more resistant to proteolytic cleavage by AEP and CTSB. The variants with enzymatic activity and cytotoxicity levels equivalent to or better than EcAII WT were submitted to in vivo assays. Only one of the mutants presented increased serum half-life, so resistance to these proteases is not the only feature involved in EcAII stability in vivo. Our results showed alteration of the phenotypic profile of B cells isolated after animal treatment with different protease-resistant proteoforms. Furthermore, mice that were exposed to the protease-resistant proteoforms presented lower anti-asparaginase antibodies production in vivo. Our data suggest that modulating resistance to lysosomal proteases can result in less immunogenic protein drugs.


Subject(s)
Antineoplastic Agents/pharmacology , Asparaginase/pharmacology , Biological Products/pharmacology , Immunogenetic Phenomena/drug effects , Lysosomes/immunology , Peptide Hydrolases/pharmacology , Amino Acid Sequence , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Asparaginase/chemistry , Asparaginase/therapeutic use , Biological Products/chemistry , Biological Products/therapeutic use , Cattle , Cell Survival/drug effects , Cell Survival/physiology , Chickens , Dose-Response Relationship, Drug , Escherichia coli , Female , Horses , Humans , Immunogenetic Phenomena/physiology , Jurkat Cells , Lysosomes/chemistry , Mice , Mice, Inbred BALB C , Peptide Hydrolases/chemistry , Peptide Hydrolases/therapeutic use , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/immunology , Protein Structure, Secondary
4.
Cells ; 9(5)2020 05 11.
Article in English | MEDLINE | ID: mdl-32403233

ABSTRACT

Embryo implantation into the uterine wall is a highly modulated, complex process. We previously demonstrated that Annexin A1 (AnxA1), which is a protein secreted by epithelial and inflammatory cells in the uterine microenvironment, controls embryo implantation in vivo. Here, we decipher the effects of recombinant AnxA1 in this phenomenon by using human trophoblast cell (BeWo) spheroids and uterine epithelial cells (Ishikawa; IK). AnxA1-treated IK cells demonstrated greater levels of spheroid adherence and upregulation of the tight junction molecules claudin-1 and zona occludens-1, as well as the glycoprotein mucin-1 (Muc-1). The latter effect of AnxA1 was not mediated through IL-6 secreted from IK cells, a known inducer of Muc-1 expression. Rather, these effects of AnxA1 involved activation of the formyl peptide receptors FPR1 and FPR2, as pharmacological blockade of FPR1 or FPR1/FPR2 abrogated such responses. The downstream actions of AnxA1 were mediated through the ERK1/2 phosphorylation pathway and F-actin polymerization in IK cells, as blockade of ERK1/2 phosphorylation reversed AnxA1-induced Muc-1 and claudin-1 expression. Moreover, FPR2 activation by AnxA1 induced vascular endothelial growth factor (VEGF) secretion by IK cells, and the supernatant of AnxA1-treated IK cells evoked angiogenesis in vitro. In conclusion, these data highlight the role of the AnxA1/FPR1/FPR2 pathway in uterine epithelial control of blastocyst implantation.


Subject(s)
Annexin A1/metabolism , Blastocyst/metabolism , Receptors, Formyl Peptide/metabolism , Uterus/physiology , Actins/metabolism , Animals , Cell Line , Claudin-1/metabolism , Embryo Implantation , Epithelial Cells/metabolism , Female , Human Umbilical Vein Endothelial Cells/metabolism , Humans , MAP Kinase Signaling System , Mice, Inbred C57BL , Mucin-1/metabolism , Neovascularization, Physiologic , Polymerization , Spheroids, Cellular/cytology , Spheroids, Cellular/metabolism , Trophoblasts/cytology , Trophoblasts/metabolism , Vascular Endothelial Growth Factor A/metabolism , Zonula Occludens-1 Protein/metabolism
5.
J Cell Physiol ; 233(9): 6591-6603, 2018 09.
Article in English | MEDLINE | ID: mdl-29115663

ABSTRACT

Annexin A1 (AnxA1) is a glucocorticoid-regulated anti-inflammatory protein secreted by phagocytes and other specialised cells. In the endocrine system, AnxA1 controls secretion of steroid hormones and it is abundantly expressed in the testis, ovaries, placenta and seminal fluid, yet its potential modulation of fertility has not been described. Here, we observed that AnxA1 knockout (KO) mice delivered a higher number of pups, with a higher percentage of female offsprings. This profile was not dependent on the male features, as sperm from KO male mice did not present functional alterations, and had an equal proportion of Y and X chromosomes, comparable to wild type (WT) male mice. Furthermore, mismatched matings of male WT mice with female KO yielded a higher percentage of female pups per litter, a phenomenon which was not observed when male KO mice mated with female WT animals. Indeed, AnxA1 KO female mice displayed several differences in parameters related to gestation including (i) an arrested estrous cycle at proestrus phase; (ii) increased sites of implantation; (iii) reduced pre- and post-implantation losses; (iv) exacerbated features of the inflammatory reaction in the uterine fluid during implantation phase; and (v) enhanced plasma progesterone in the beginning of pregnancy. In summary, herein we highlight that AnxA1 pathway as a novel determinant of fundamental non-redundant regulatory functions during early pregnancy.


Subject(s)
Annexin A1/metabolism , Embryo Implantation/physiology , Animals , Estrous Cycle/metabolism , Estrous Cycle/physiology , Female , Male , Mice , Mice, Inbred BALB C , Mice, Knockout , Models, Animal , Pregnancy , Proestrus/metabolism , Proestrus/physiology , Sex Ratio , Uterus/metabolism , Uterus/physiology , X Chromosome/metabolism , X Chromosome/physiology , Y Chromosome/metabolism , Y Chromosome/physiology
6.
Int J Nanomedicine ; 12: 7153-7163, 2017.
Article in English | MEDLINE | ID: mdl-29026308

ABSTRACT

Metastatic melanoma is an aggressive cancer with increasing incidence and limited therapies in advanced stages. Systemic neutrophilia or abundant neutrophils in the tumor contribute toward its worst prognosis, and the interplay of cancer and the immune system has been shown in tumor development and metastasis. We recently showed the in vivo efficacy of poly(ε-caprolactone) lipid-core nanocapsule (LNC) or LNC loaded with acetyleugenol (AcE-LNC) to treat B16F10-induced melanoma in mice. In this study, we investigated whether LNC or AcE-LNC toxicity could involve modifications on crosstalk of melanoma cells and neutrophils. Therefore, melanoma cells (B16F10) were pretreated with vehicle, LNC, AcE or AcE-LNC for 24 h, washed and, further, cocultured for 18 h with peritoneal neutrophils obtained from C57Bl/6 mice. Melanoma cells were able to internalize the LNC or AcE-LNC after 2 h of incubation. LNC or AcE-LNC pretreatments did not cause melanoma cells death, but led melanoma cells to be more susceptible to death in serum deprivation or hypoxia or in the presence of neutrophils. Interestingly, the production of reactive oxygen species (ROS), which causes cell death, was increased by neutrophils in the presence of LNC- and AcE-LNC-pretreated melanoma cells. LNC or AcE-LNC treatments reduced the concentration of transforming growth factor-ß (TGF-ß) in the supernatant of melanoma cells, a known factor secreted by cancer cells to induce pro-tumoral actions of neutrophils in the tumor microenvironment. In addition, we found reduced levels of pro-tumoral chemical mediators VEGF, arginase-1, interleukin-10 (IL-10) and matrix metalloproteinase-9 (MMP-9) in the supernatant of LNC or AcE-LNC-pretreated melanoma cells and cocultured with neutrophils. Overall, our data show that the uptake of LNC or AcE-LNC by melanoma cells affects intracellular mechanisms leading to more susceptibility to death and also signals higher neutrophil antitumoral activity.


Subject(s)
Eugenol/analogs & derivatives , Melanoma/drug therapy , Melanoma/pathology , Nanocapsules/chemistry , Neutrophils/drug effects , Animals , Antineoplastic Agents, Phytogenic/administration & dosage , Antineoplastic Agents, Phytogenic/chemistry , Coculture Techniques , Drug Delivery Systems/methods , Eugenol/administration & dosage , Eugenol/chemistry , Interleukin-10/metabolism , Lipids/chemistry , Male , Matrix Metalloproteinase 9/metabolism , Melanoma/metabolism , Mice, Inbred C57BL , Nanocapsules/administration & dosage , Neutrophils/metabolism , Neutrophils/pathology , Polyesters/chemistry , Reactive Oxygen Species/metabolism , Tumor Hypoxia
8.
Clin Sci (Lond) ; 117(9): 331-8, 2009 Sep 01.
Article in English | MEDLINE | ID: mdl-19335337

ABSTRACT

SCFAs (short-chain fatty acids) are produced by anaerobic bacterial fermentation. Increased concentrations of these fatty acids are observed in inflammatory conditions, such as periodontal disease, and at sites of anaerobic infection. In the present study, the effect of the SCFAs acetate, propionate and butyrate on neutrophil chemotaxis and migration was investigated. Experiments were carried out in rats and in vitro. The following parameters were measured: rolling, adherence, expression of adhesion molecules in neutrophils (L-selectin and beta2 integrin), transmigration, air pouch influx of neutrophils and production of cytokines [CINC-2alphabeta (cytokine-induced neutrophil chemoattractant-2alphabeta), IL-1beta (interleukin-1beta), MIP-1alpha (macrophage inflammatory protein-1alpha) and TNF-alpha (tumour necrosis factor-alpha)]. SCFAs induced in vivo neutrophil migration and increased the release of CINC-2alphabeta into the air pouch. These fatty acids increased the number of rolling and adhered cells as evaluated by intravital microscopy. SCFA treatment increased L-selectin expression on the neutrophil surface and L-selectin mRNA levels, but had no effect on the expression of beta2 integrin. Propionate and butyrate also increased in vitro transmigration of neutrophils. These results indicate that SCFAs produced by anaerobic bacteria raise neutrophil migration through increased L-selectin expression on neutrophils and CINC-2alphabeta release.


Subject(s)
Fatty Acids, Volatile/pharmacology , Inflammation/pathology , Neutrophil Infiltration/drug effects , Animals , CD18 Antigens/biosynthesis , CD18 Antigens/genetics , Cell Adhesion/drug effects , Cells, Cultured , Chemotaxis, Leukocyte/drug effects , Cytokines/biosynthesis , Gene Expression Regulation/drug effects , Inflammation/metabolism , L-Selectin/biosynthesis , L-Selectin/genetics , Male , Neutrophil Infiltration/physiology , Neutrophils/drug effects , Neutrophils/metabolism , RNA, Messenger/genetics , Rats , Rats, Wistar
9.
Biochem Biophys Res Commun ; 377(2): 694-698, 2008 Dec 12.
Article in English | MEDLINE | ID: mdl-18948084

ABSTRACT

Interactions of leukocytes with endothelium play a role for the immune system modulated by endogenous agents, such as glucocorticoids and nitric oxide (NO). Glucocorticoids inhibit leukocyte-endothelial interactions whereas the role of NO is still controversial. In this study, the activity of Ca(+2)-dependent nitric oxide synthases was in vivo blocked in male Wistar rats by given l-NAME, 20mgkg(-1) for 14 days dissolved in drinking water and expression of adhesion molecules involved in leukocyte-endothelial interactions was investigated. Expressions of L-selectin and PECAM-1 in peripheral leukocytes and PECAM-1 in endothelial cells were reduced by l-NAME treatment. Only L-selectin expression was controlled at transcriptional levels. These effects were not dependent on endogenous glucocorticoids, as corticosterone levels were not altered in l-NAME-treated rats. Our results show that NO, produced at physiological levels, controls expression of constitutive adhesion molecules expressions in cell membranes by different mechanisms of action.


Subject(s)
L-Selectin/biosynthesis , Nitric Oxide Synthase Type III/antagonists & inhibitors , Nitric Oxide Synthase Type I/antagonists & inhibitors , Nitric Oxide/metabolism , Platelet Endothelial Cell Adhesion Molecule-1/biosynthesis , Animals , Calcium/metabolism , Cell Membrane/metabolism , Corticosterone/blood , Enzyme Inhibitors/pharmacology , L-Selectin/genetics , Leukocytes/enzymology , Male , Muscle, Skeletal/enzymology , NG-Nitroarginine Methyl Ester/pharmacology , Platelet Endothelial Cell Adhesion Molecule-1/genetics , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...