Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Mass Spectrom Rev ; 40(3): 280-305, 2021 05.
Article in English | MEDLINE | ID: mdl-32608033

ABSTRACT

Studies of large proteins, protein complexes, and membrane protein complexes pose new challenges, most notably the need for increased ion mobility (IM) and mass spectrometry (MS) resolution. This review covers evolutionary developments in IM-MS in the authors' and key collaborators' laboratories with specific focus on developments that enhance the utility of IM-MS for structural analysis. IM-MS measurements are performed on gas phase ions, thus "structural IM-MS" appears paradoxical-do gas phase ions retain their solution phase structure? There is growing evidence to support the notion that solution phase structure(s) can be retained by the gas phase ions. It should not go unnoticed that we use "structures" in this statement because an important feature of IM-MS is the ability to deal with conformationally heterogeneous systems, thus providing a direct measure of conformational entropy. The extension of this work to large proteins and protein complexes has motivated our development of Fourier-transform IM-MS instruments, a strategy first described by Hill and coworkers in 1985 (Anal Chem, 1985, 57, pp. 402-406) that has proved to be a game-changer in our quest to merge drift tube (DT) and ion mobility and the high mass resolution orbitrap MS instruments. DT-IMS is the only method that allows first-principles determinations of rotationally averaged collision cross sections (CSS), which is essential for studies of biomolecules where the conformational diversities of the molecule precludes the use of CCS calibration approaches. The Fourier transform-IM-orbitrap instrument described here also incorporates the full suite of native MS/IM-MS capabilities that are currently employed in the most advanced native MS/IM-MS instruments. © 2020 John Wiley & Sons Ltd. Mass Spec Rev.


Subject(s)
Mass Spectrometry/methods , Proteins/chemistry , Fourier Analysis , Mass Spectrometry/instrumentation , Peptides/analysis , Peptides/chemistry , Protein Conformation , Protein Folding , Protein Stability , Proteins/analysis , Solvents/chemistry , Spectrometry, Mass, Electrospray Ionization/methods , Ubiquitin , Water/chemistry
2.
Anal Chem ; 92(16): 11155-11163, 2020 08 18.
Article in English | MEDLINE | ID: mdl-32662991

ABSTRACT

Rotationally averaged collision cross section (CCS) values for a series of proteins and protein complexes ranging in size from 8.6 to 810 kDa are reported. The CCSs were obtained using a native electrospray ionization drift tube ion mobility-Orbitrap mass spectrometer specifically designed to enhance sensitivity while having high-resolution ion mobility and mass capabilities. Periodic focusing (PF)-drift tube (DT)-ion mobility (IM) provides first-principles determination of the CCS of large biomolecules that can then be used as CCS calibrants. The experimental, first-principles CCS values are compared to previously reported experimentally determined and computationally calculated CCS using projected superposition approximation (PSA), the Ion Mobility Projection Approximation Calculation Tool (IMPACT), and Collidoscope. Experimental CCS values are generally in agreement with previously reported CCSs, with values falling within ∼5.5%. In addition, an ion mobility resolution (CCS centroid divided by CCS fwhm) of ∼60 is obtained for pyruvate kinase (MW ∼ 233 kDa); however, ion mobility resolution for bovine serum albumin (MW ∼ 68 kDa) is less than ∼20, which arises from sample impurities and underscores the importance of sample quality. The high resolution afforded by the ion mobility-Orbitrap mass analyzer provides new opportunities to understand the intricate details of protein complexes such as the impact of post-translational modifications (PTMs), stoichiometry, and conformational changes induced by ligand binding.


Subject(s)
Proteins/chemistry , Animals , Cattle , Ion Mobility Spectrometry/methods , Ion Mobility Spectrometry/statistics & numerical data , Mass Spectrometry/methods , Mass Spectrometry/statistics & numerical data , Protein Structure, Quaternary , Rabbits
3.
J Phys Chem B ; 124(11): 2081-2087, 2020 03 19.
Article in English | MEDLINE | ID: mdl-32096646

ABSTRACT

Here, cryogenic ion mobility-mass spectrometry (cryo-IM-MS) is used to investigate intracluster proton transfer reactions of 4-aminobenzoic acid during the transition from solution to the gas phase. Previous studies have shown that protonation of the amine group of 4-aminobenzoic acid (4-ABAH+) is favored in solution (N-protomer), whereas protonation of the carboxylic acid group is favored in the gas phase (O-protomer). Results from cryo-IM-MS (80 K) studies of hydrated 4-ABAH+ ions, 4-ABAH+(H2O)n, are interpreted as evidence that the proton transfer reaction occurs through a water bridge at n = 6 connecting the -NH3+ and -COOH groups, that is, a Grotthuss mechanism. The weak binding energy of water molecules imposes limits for obtaining first-principles collisional cross sections (CCSs) of hydrated ions; consequently, candidate structures for 4-ABAH+(H2O)0-6 ions are derived by correlating experimental arrival-time distributions to theoretically determined CCSs. To our knowledge, these are the first first-principles determinations of CCS for hydrated ions. Apolar cosolvents, particularly acetonitrile, have been postulated to inhibit proton transfer by blocking the Grotthuss mechanism, but our data suggest that acetonitrile simply stabilizes the ammonium ion.

4.
J Phys Chem Lett ; 10(6): 1349-1354, 2019 Mar 21.
Article in English | MEDLINE | ID: mdl-30840463

ABSTRACT

Guanidinium ions (GdmH+) are reported to form stable complexes (GdmH+/GdmH+) in aqueous solution despite strong repulsive interactions between the like-charged centers. These complexes are thought to play important roles in protein folding, membrane penetration, and formation of protein dimers. Although GdmH+ ions are weakly hydrated, semiempirical calculations provide evidence that these like-charged complexes are stabilized by water molecules, which serve important structural and energetic roles. Specifically, water molecules bridge between the GdmH+ ions of GdmH+/GdmH+ complexes as well as complexes involving the guanidinium side chains of arginine. Potential biological significances of like-charged complexes have been largely confirmed by ab initio molecular dynamics simulations and indirect experimental evidence. We report cryo-ion mobility-mass spectrometry results for the GdmH+/GdmH+ ion pair confined in a nanodroplet- the first direct experimental observation of this like-charged complex. A second like-charged complex, described as a water-mediated complex involving GdmH+ and H3O+, was also observed.

5.
Phys Rev E Stat Nonlin Soft Matter Phys ; 73(5 Pt 2): 056402, 2006 May.
Article in English | MEDLINE | ID: mdl-16803045

ABSTRACT

Low-pressure pulsed plasmas are widely used in various technological applications. Understanding of the phenomena taking place in afterglow phase of the discharge makes possible the optimization of the operation conditions and improvement of the technical parameters. At low pressure the electron component of the plasma determines the main features of the discharge since its behavior dominates all other plasma properties. We study the electron kinetics in a low-pressure afterglow plasma of an inductively coupled discharge by means of a self-consistent model which uses the nonlocal kinetic approach. The main features of the model are given. Special attention is paid to determination of the steady state of the discharge from which the decay of the plasma begins. Emphasis is also put on the description of the collisional interaction between the electrons and gas. Results of theoretical investigations for argon at a pressure of 2-4 Pa are presented. Calculated temporal evolutions of the isotropic part of the electron velocity distribution function, electron density, mean electron energy, and wall potential are discussed in comparison with experimental data.

SELECTION OF CITATIONS
SEARCH DETAIL