Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Pediatrics ; 148(4)2021 10.
Article in English | MEDLINE | ID: mdl-34193619

ABSTRACT

OBJECTIVES: To determine the prevalence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in infants hospitalized for a serious bacterial infection (SBI) evaluation and clinically characterize young infants with SARS-CoV-2 infection. METHODS: A retrospective chart review was conducted on infants <90 days of age hospitalized for an SBI evaluation. The study was conducted at 4 inpatient facilities in New York City from March 15, 2020, to December 15, 2020. RESULTS: We identified 148 SBI evaluation infants who met inclusion criteria. A total of 22 infants (15%) tested positive for SARS-CoV-2 by nasopharyngeal reverse transcription polymerase chain reaction; 31% of infants admitted during periods of high community SARS-CoV-2 circulation tested positive for SARS-CoV-2, compared with 3% when community SARS-CoV-2 circulation was low (P < .001). The mean age of infants with SARS-CoV-2 was higher than that of SARS-CoV-2-negative infants (33 [SD: 17] days vs 23 [SD: 23] days, respectively; P = .03), although no age difference was observed when analysis was limited only to febrile infants. An isolated fever was the most common presentation of SARS-CoV-2 (n = 13; 59%). Admitted infants with SARS-CoV-2 were less likely to have positive urine culture results (n = 1 [5%] versus n = 25 [20%], respectively; P = .002), positive cerebrospinal culture results (n = 0 [0%] versus n = 5 [4%], respectively; P = .02), or be admitted to intensive care (n = 2 [9%] versus n = 47 [37%]; P < .001), compared with infants without SARS-CoV-2. CONCLUSIONS: SARS-CoV-2 was common among young infants hospitalized for an SBI evaluation during periods of high but not low community SARS-CoV-2 circulation in New York City, although most infants did not require intensive care admission.


Subject(s)
Bacterial Infections/diagnosis , COVID-19/diagnosis , COVID-19/epidemiology , Age of Onset , Bacterial Infections/complications , Bacterial Infections/epidemiology , COVID-19/complications , COVID-19 Nucleic Acid Testing , Comorbidity , Female , Fever/microbiology , Fever/virology , Humans , Infant , Infant, Newborn , Male , New York City/epidemiology , Prevalence , Retrospective Studies , SARS-CoV-2
2.
Article in English | MEDLINE | ID: mdl-26075187

ABSTRACT

BACKGROUND: Urinary tract infections (UTIs) are among the most common infections in the pediatric population. Over the last two decades, antibiotic resistance is increasing significantly as extended spectrum beta lactamase (ESBL) producing organisms are emerging. The aim of this study is to provide a comprehensive view of the epidemiologic characteristics of UTIs in hospitalized children, examine the risk factors of UTIs caused by ESBL-producing organisms, and determine the resistance patterns in the isolated organisms over the last 10 years. METHODS: Retrospective chart review was conducted at two Lebanese medical centers. Subjects were identified by looking at the following ICD-9 discharge codes: "Urinary tract infection," "UTI," "Cystitis," and/or "Pyelonephritis." Children less than 18 years of age admitted for UTI between January 1st, 2001 and December 31st, 2011 were included. Cases whose urine culture result did not meet our definition for UTI were excluded. Chi-square, Fisher's exact test, and multivariate logistic regression were used to determine risk factors for ESBL. Linear regression analysis was used to determine resistance patterns. RESULTS: The study included 675 cases with a median age of 16 months and female predominance of 77.7% (525 cases). Of the 584 cases caused by Escherichia coli or Klebsiella spp, 91 cases (15.5%) were found to be ESBL-producing organisms. Vesico-ureteral reflux and previous antibiotics use were found to be independent risk factors for ESBL-producing E. coli and Klebsiella spp. (p < 0.05). A significant linear increase in resistance to all generations of Cephalosporins (r (2) = 0.442) and Fluoroquinolones (r (2) = 0.698) was found. CONCLUSION: The recognition of risk factors for infection with ESBL-producing organisms and the observation of increasing overall resistance to antibiotics warrant further studies that might probably lead to new recommendations to guide management of UTIs and antibiotic use in children and adolescents.


Subject(s)
Bacteria/drug effects , Bacteria/isolation & purification , Urinary Tract Infections/epidemiology , Urinary Tract Infections/pathology , beta-Lactam Resistance , beta-Lactamases/metabolism , Adolescent , Animals , Bacteria/classification , Child , Child, Preschool , Cohort Studies , Female , Humans , Infant , Infant, Newborn , Male , Retrospective Studies , Risk Factors , Urinary Tract Infections/microbiology
3.
Infect Drug Resist ; 7: 85-99, 2014.
Article in English | MEDLINE | ID: mdl-24729718

ABSTRACT

Invasive meningococcal disease is a serious infection that occurs worldwide. It is caused by Neisseria meningitidis, of which six serogroups (A, B, C, W-135, X, and Y) are responsible for most infections. The case fatality rate of meningococcal disease remains high and can lead to significant sequelae. Vaccination remains the best strategy to prevent meningococcal disease. Polysaccharide vaccines were initially introduced in the late 1960s but their limitations (poor immunogenicity in infants and toddlers and hyporesponsiveness after repeated doses) have led to the development and use of meningococcal conjugate vaccines, which overcome these limitations. Two quadrivalent conjugated meningococcal vaccines - MenACWY-DT (Menactra(®)) and MenACWY-CRM197 (Menveo(®)) - using diphtheria toxoid or a mutant protein, respectively, as carrier proteins have already been licensed in the US. Recently, a quadrivalent meningococcal vaccine conjugated to tetanus toxoid (MenACWY-TT; Nimenrix(®)) was approved for use in Europe in 2012. The immunogenicity of MenACWY-TT, its reactogenicity and safety profile, as well as its coadministration with other vaccines are discussed in this review. Clinical trials showed that MenACWY-TT was immunogenic in children above the age of 12 months, adolescents, and adults, and has an acceptable reactogenicity and safety profile. Its coadministration with several other vaccines that are commonly used in children, adolescents, and adults did not affect the immunogenicity of MenACWY-TT or the coadministered vaccine, nor did it affect its reactogenicity and safety. Other studies are now ongoing in order to determine the immunogenicity, reactogenicity, and safety of MenACWY-TT in infants from the age of 6 weeks.

SELECTION OF CITATIONS
SEARCH DETAIL