Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38651595

ABSTRACT

Ecological nutrition aims to unravel the extensive web of nutritional links that drives animals in their interactions with their ecological environments. Nutrition plays a key role in the success of European wild rabbit (Oryctolagus cuniculus) and could be affected by the breeding status of the animals and reflected in the metabolome of this species. As nutritional needs are considerably increased during pregnancy and lactation, the main objective of this work was to determine how the breeding status (pregnant and lactating) of European wild rabbit does affects nutritional requirements and their metabolome (using targeted and untargeted metabolomics), aiming to find a useful biomarker of breeding status and for monitoring nutritional requirements. To address this gap, 60 wild European rabbits were studied. Animals were divided according to their breeding status and only pregnant (n = 18) and lactating (n = 11) rabbit does were used (n = 29 in total). The body weight and length of each animal were analyzed. The relative and absolute chemical composition of the gastric content and whole blood sample were taken, and targeted and untargeted metabolomics were analyzed. As a main result, there were no differences in biometric measurements, gastric content, and targeted metabolomics, except for live weight and nonesterified fatty acids (NEFA), as pregnant animals showed higher live weight (+12%; p = 0.0234) and lower NEFA acid levels (-46%; p = 0.0262) than lactating females. Regarding untargeted metabolomics, a good differentiation of the metabolome of the two breeding groups was confirmed, and it was proven that pregnant animals showed higher plasmatic levels of succinic anhydride (3.48 more times; p = 0.0236), succinic acid (succinate) (3.1 more times; p = 0.0068) and propionic acid (3.98 more times; p = 0.0121) than lactating animals. However, lactating animals showed higher levels of N-[(3a,5b,7b)-7-hydroxy-24-oxo-3-(sulfoxide) cholan-24-yl]-Glycine (cholestadien) (2.4 more times; p < 0.0420), 4-maleyl-acetoacetate (MAA) (3.2 more times; p < 0.0364) and irilone (2.2 more times; p = 0.0451) than pregnant animals, any of these metabolites could be used as a potential biomarker. From these results, it can be concluded that the most notable changes were observed in the metabolome of individuals, with most of the changes observed being due to energy and protein mobilisation.

2.
J Anim Sci ; 1012023 Jan 03.
Article in English | MEDLINE | ID: mdl-37850960

ABSTRACT

The Zn requirement of pigs immediately after weaning is more investigated compared to the Zn requirement in the growth period between 10 and 30 kg. Unabsorbed and excessive dietary Zn is excreted mainly through feces, and spreading pig slurry to fields can cause environmental issues because high levels of Zn can impair plant growth and contribute to the development of antimicrobial resistance genes in microorganisms. Therefore, more precise knowledge of Zn requirements and dietary Zn recommendations is important. The present study investigated the optimal dietary Zn content for 10- to 30-kg pigs. The study used 150 pigs weaned at 28 d of age (day 0) and supplied with 1,474 mg dietary Zn/kg the first 2 wk post-weaning. After 2 wk, pigs were randomly distributed according to body weight (BW; 10.1 ±â€…0.3 kg) and sex, to individually housing, and fed a diet supplemented with either 0, 30, 60, 120, or 240 mg Zn/kg (from ZnO), resulting in total dietary Zn contents of 80, 92, 117, 189, and 318 mg/kg until week 6 post-weaning. BW, feed intake, and fecal scores were recorded, and samples of blood (weeks 2, 3, 5, and 6) and tissues (week 6) were collected. The feed intake, growth, feed efficiency, relative weight of the pancreas and liver, Zn concentration in the liver, and pancreatic digestive enzyme activity were unaffected by dietary Zn content (P > 0.12). The serum Zn level decreased (P < 0.01) by up to 24% from weeks 2 to 3. The serum Zn concentrations in weeks 5 and 6 were similar to in week 2 when 117, 189, and 318 mg Zn/kg were provided, while with 80 and 92 mg Zn/kg the serum Zn concentration was lower (P < 0.01) than in week 2. The serum Zn concentration reached a plateau in weeks 5 and 6, and breakpoints were calculated at 126 ±â€…17 and 102 ±â€…6 mg Zn/kg, respectively. Bone Zn status was greater (P < 0.01) with 189 than 80 mg Zn/kg and a breakpoint was calculated at 137 ±â€…19 mg Zn/kg. According to performance, the Zn requirement for 10- to 30-kg pigs can be fulfilled with 80 mg total Zn/kg, but based on serum and bone Zn status, the optimal total dietary Zn content is 102 to 137 mg/kg. The latter corresponds to a daily Zn intake (requirement) of 103 to 138 mg when calculated from the average feed intake during weeks 3 to 6 (1,005 g/d). Importantly, the presented results are obtained in pigs supplied with 1,474 mg Zn/kg from ZnO the first 2 wk post-weaning and a high level of phytase (1,000 phytase units) in the diet throughout the experiment.


It is important to ensure that the dietary zinc (Zn) content fulfills the Zn requirement of pigs. The unabsorbed proportion of dietary Zn is excreted mainly through feces and supplying pigs with more Zn than they need increases the excretion, which may be an environmental issue. This study investigated the optimal dietary Zn content in 10- to 30-kg pigs. From weaning until 10 kg (the first 2 wk post-weaning) pigs were fed a diet containing 1,474 mg Zn/kg. From the third to the sixth week post-weaning (10- to 30-kg) pigs were fed a basal diet supplemented with either 0, 30, 60, 120, or 240 mg Zn/kg from zinc oxide. Analysis of the five experimental diets showed total Zn contents of 80, 92, 117, 189, and 318 mg/kg. The feed intake, weight gain, and feed efficiency were unaffected by dietary Zn content. The Zn concentration in serum (blood) at the end of the experiment was lowest with 80 and 92 mg total Zn/kg compared to 117, 189, and 318 mg total Zn/kg, which resulted in similar serum Zn concentration. The Zn content in bone was lower at 80 compared to 189 mg total Zn/kg.


Subject(s)
6-Phytase , Zinc Oxide , Animals , Animal Feed/analysis , Body Weight , Diet/veterinary , Dietary Supplements , Swine , Zinc , Male , Female
3.
Microorganisms ; 11(10)2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37894132

ABSTRACT

To evaluate the tolerance of a high-fiber diet in Erhualian pigs (Er-HL), the present investigation systematically investigated the ramifications of varying wheat bran fiber levels, specified as total dietary fiber (TDF) values of 14.07%, 16.32%, 17.99%, and 18.85%, on growth performance, fiber digestibility and gut microbiota in Er-HL, large Large White pigs (L-LW, the same physiological stage as the Er-HL) and small Large White pigs (S-LW, the same body weight as the Er-HL). Our results revealed that fiber levels exerted no discernable impact on growth performance (average daily feed intake (ADFI), and average daily gain (ADG)) of Er-HL (p > 0.05). Conversely, L-LW exhibited a decrease in ADFI and ADG with increasing fiber levels (p < 0.05). Notably, the apparent total tract digestibility (ATTD) of various fiber components, including neutral detergent fiber (NDF), acid detergent fiber (ADF), hemicellulose, TDF and insoluble dietary fiber (IDF), in Er-HL were significantly higher than those in S-LW and L-LW irrespective of diets (p < 0.05). The ATTD of cellulose and hemicellulose in Er-HL significantly decreased with increasing fiber levels (p < 0.05), yet remained statistically indifferent when comparing the 7%-wheat-bran-replaced diet (7% WRB, TDF 16.32%) to the basal diet (TDF 14.07%) (p > 0.05). The cecal microbiota of Er-HL had higher richness estimators (Chao1 and ACE) than those of S-LW and L-LW irrespective of diets (p < 0.01). Breed serves as a pivotal determinant in shaping swine gut microbiota. Thirteen genera were selected as the key bacteria related to high fiber digestibility of Er-HL. Further functional examination of these key genera elucidated an enrichment of pathways pertinent to carbohydrate metabolism in Er-HL samples compared with S-LW and L-LW samples. In summary, Er-HL exhibited high-fiber tolerance both in terms of growth performance and fiber digestibility compared with Large White pigs. Specifically, the ATTD of NDF, ADF, hemicellulose, IDF and TDF were significantly higher in Er-HL compared with L-LW and S-LW, irrespective of diets. Fiber level exerted no discernable impact on growth performance (ADFI, ADG) and the ATTD of fiber (NDF, ADF, IDF and TDF) in Er-HL. The optimum fiber level of the Er-HL was identified as 7% WRB (TDF 16.32%). Thirteen genera were ascertained to significantly contribute to high fiber digestibility of Er-HL, correlating with an enhancement of carbohydrate metabolism pathways.

4.
Animals (Basel) ; 13(11)2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37889763

ABSTRACT

The objective was to study the effects of weaning in week 5 (W5) vs. week 4 (W4), as well as liquid (LF) vs. dry feed (DF), on growth performance, disaccharidase activity and nutrient transporter expression after weaning. The experiment included 12,923 pigs fed LF or DF in the pre-weaning period and a subpopulation of 15 pigs from each group, W4DF, W4LF, W5DF and W5LF, which were weighed and euthanized five days after weaning. The proximal part of the small intestine was analyzed for maltase, lactase and sucrase activity and the expression of SGLT-1, GLUT-2 and PepT-1. Pigs fed LF displayed less maltase activity (2100 vs. 2729 U/mg protein, p < 0.05) but an increased expression of SGLT-1 (∆Ct: 5.22 vs. 6.21, p = 0.01). Pigs weaned in W5 were heavier than those weaned in W4 (9.35 vs. 7.11 kg BW, p ≤ 0.05), and pigs fed LF were heavier than those fed DF (8.55 vs. 7.91 kg BW, p ≤ 0.05) five days after weaning in the subpopulation. LF pigs (21.8 kg) were heavier than DF pigs (20.6 kg) (SE 0.108, p < 0.0001), and W4 pigs (21.0 kg) were lighter than W5 pigs (21.5 kg) (SE 0.108, p = 0.01) at nine weeks. LF increased weight gain in the early post-weaning period and at nine weeks, although this was apparently not explained by accelerated gut maturation.

5.
Metabolites ; 13(9)2023 Aug 27.
Article in English | MEDLINE | ID: mdl-37755254

ABSTRACT

The objective of the study was to investigate the preventive effect on obesity-related conditions of rosemary (Rosmarinus officinalis L.) extract (RE) in young, healthy rats fed a high-fat Western-style diet to complement the existing knowledge gap concerning the anti-obesity effects of RE in vivo. Sprague Dawley rats (71.3 ± 0.46 g) were fed a high-fat Western-style diet (WD) or WD containing either 1 g/kg feed or 4 g/kg feed RE for six weeks. A group fed standard chow served as a negative control. The treatments did not affect body weight; however, the liver fat percentage was reduced in rats fed RE, and NMR analyses of liver tissue indicated that total cholesterol and triglycerides in the liver were reduced. In plasma, HDL cholesterol was increased while triglycerides were decreased. Rats fed high RE had significantly increased fasting plasma concentrations of Glucagon-like peptide-1 (GLP-1). Proteomics analyses of liver tissue showed that RE increased enzymes involved in fatty acid oxidation, possibly associated with the higher fasting GLP-1 levels, which may explain the improvement of the overall lipid profile and hepatic fat accumulation. Furthermore, high levels of succinic acid in the cecal content of RE-treated animals suggested a modulation of the microbiota composition. In conclusion, our results suggest that RE may alleviate the effects of consuming a high-fat diet through increased GLP-1 secretion and changes in microbiota composition.

6.
Animals (Basel) ; 13(12)2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37370496

ABSTRACT

The objective of this investigation was to study the effects of different cereal types, barley and wheat, with different particle sizes (PS) on the recovery of ileal digesta and fecal excretion, digestion of nutrients and fiber components, mean transit time (MTT), and short-chain fatty acid content and composition in growing pigs studied in two experiments. Five barrows with ileal cannulas (initial BW 35.9 ± 1.5 kg) in Experiment 1 and thirty-two castrated pigs (30.8 ± 1.3 kg) in Experiment 2 were fed four different diets: barley fine, barley coarse, wheat fine and wheat coarse diets. The cereal type and PS did not influence the relative weight of the small and large intestines and pH of digesta, whereas MTT in the large intestine of pigs fed the coarse barley diet was lower compared to pigs fed other diets (p < 0.05). Pigs fed the coarse barley diet had lower apparent ileal digestibility (AID) and apparent total tract digestibility (ATTD) of nutrients and fiber (p < 0.05), whereas pigs fed the fine barley diet had similar AID and ATTD to pigs fed wheat fine and coarse diets (p < 0.05). In conclusion, the barley diet was more influenced by PS in comparison to wheat, thereby inducing lower AID and ATTD of nutrient.

7.
Animal ; 17(5): 100798, 2023 May.
Article in English | MEDLINE | ID: mdl-37148623

ABSTRACT

The global demand for sustainably produced protein feeds for animal production is increasing. Methanotrophic bacteria grow on methane and convert it into microbial cell protein (MCP) that has been shown to have high nutritive value for growing pigs. The present aimed to investigate how increasing amounts of MCP in diets fed during the first 15 days after weaning affect the growth performance of piglets from weaning until day 43 postweaning. Furthermore, the effect of MCP on intestinal morphology and histopathology was assessed on day 15 after weaning. During seven consecutive weeks, approximately 480 piglets were recruited for the experiment per batch. The piglets were divided into four groups and housed in eight double pens with 60 piglets per pen. The piglets were fed one of four experimental diets with 0, 3, 6, or 10% of MCP included at the expense of fishmeal and subsequently potato protein for the first 15 days postweaning. Thereafter, all pigs were fed commercial weaner diets in two phases (days 16-30 and days 31-43) until day 43 postweaning. All diets were without medicinal zinc. Feed intake and growth were registered on double pen level during all three phases. On day 15 after weaning, 10 piglets per treatment were randomly selected, autopsied, and sampled for intestinal morphology and histopathology. Daily gain during the first 15 days postweaning tended (P = 0.09) to be affected by the inclusion of MCP in the weaning diet being lowest in the group fed 10% MCP. Treatment did not affect daily feed intake; however, Feed Conversion Ratio (FCR) was significantly affected (P = 0.003) showing the highest FCR in piglets fed 10% MCP. Growth performance was not affected by the experimental treatment during the following phases. In the small intestine, villous height tended (P = 0.09) to show a quadratic response to level of MCP in the diet with the longest villi observed after feeding 6% MCP. Dietary treatment did not affect crypt depth. The villous height to crypt depth (VC) ratio showed a quadratic response to increased dietary inclusion of MCP (P = 0.02) with piglets fed 6% MCP having the highest VC ratio. In conclusion, this study demonstrated that MCP could constitute 6% of diets as-fed (22% of total CP), at the expense of fishmeal and potato protein, for newly weaned piglets without negative effects on growth rates and FCR. The inclusion of MCP in diets for newly weaned piglets could be part of improving the sustainability of pig production.


Subject(s)
Diet , Intestines , Animals , Swine , Diet/veterinary , Intestine, Small/anatomy & histology , Intestinal Mucosa , Weaning , Animal Feed/analysis
8.
Food Funct ; 12(7): 2886-2900, 2021 Apr 07.
Article in English | MEDLINE | ID: mdl-33877244

ABSTRACT

The effects of arabinoxylan (AX)-rich rye bran based diet (RB) and antibiotics on digestion, fermentation and short-chain fatty acids (SCFA) absorption were studied compared with an iso-dietary fibre (DF) cellulose based diet (CEL). Thirty female pigs (body weight 72.5 ± 3.9 kg) were fed a standard swine diet in week 1, CEL as wash-out for bran-associated bioactive components in week 2 and then divided into 3 groups fed either the CEL (n = 10) or RB (n = 20) for 2 weeks, where 10 pigs from RB had daily intramuscular antibiotic injections (RB+) and the other 10 pigs were untreated (RB-) in week 4. In RB, the degradation of AX mainly occurred in caecum and proximal colon (P < 0.01) and to a higher extent than cellulose, which on the other hand, irrespective of antibiotic treatment, was less degraded in the RB groups than in the CEL (P < 0.01). The apparent digestibility of fat and protein in the distal small intestine was lower for RB than CEL (P < 0.05), the protein digestibility remained lower in most of the colon, and the digestibility was not affected by treatment with antibiotics. The colonic concentrations of SCFA, acetate and propionate as well as the butyrate concentration in the distal colon were lower with the RB treatments compared with CEL (P < 0.01). Caecal butyrate concentrations were on the other hand higher, and a significant reduction was seen with antibiotic treatment (P < 0.001). The daily net absorption of SCFA and acetate was lower with RB than with CEL (P < 0.01). In conclusion, RB resulted in different DF degradation processes and SCFA production compared with CEL, whereas antibiotic treatment had marginal effects on the intestinal DF degradation but hampered butyrate production.


Subject(s)
Anti-Bacterial Agents/pharmacology , Dietary Fiber/administration & dosage , Digestion/drug effects , Fatty Acids, Volatile/pharmacokinetics , Fermentation/drug effects , Secale , Animal Feed , Animals , Butyrates/metabolism , Cellulose/administration & dosage , Diet , Fatty Acids, Volatile/biosynthesis , Female , Intestinal Absorption/drug effects , Sus scrofa , Xylans/administration & dosage
9.
Metabolites ; 10(11)2020 Nov 12.
Article in English | MEDLINE | ID: mdl-33198236

ABSTRACT

The metabolome and gut microbiota were investigated in a juvenile Göttingen minipig model. This study aimed to explore the metabolic effects of two carbohydrate sources with different degrees of risk in obesity development when associated with a high fat intake. A high-risk (HR) high-fat diet containing 20% fructose was compared to a control lower-risk (LR) high-fat diet where a similar amount of carbohydrate was provided as a mix of digestible and resistant starch from high amylose maize. Both diets were fed ad libitum. Non-targeted metabolomics was used to explore plasma, urine, and feces samples over five months. Plasma and fecal short-chain fatty acids were targeted and quantified. Fecal microbiota was analyzed using genomic sequencing. Data analysis was performed using sparse multi-block partial least squares regression. The LR diet increased concentrations of fecal and plasma total short-chain fatty acids, primarily acetate, and there was a higher relative abundance of microbiota associated with acetate production such as Bacteroidetes and Ruminococcus. A higher proportion of Firmicutes was measured with the HR diet, together with a lower alpha diversity compared to the LR diet. Irrespective of diet, the ad libitum exposure to the high-energy diets was accompanied by well-known biomarkers associated with obesity and diabetes, particularly branched-chain amino acids, keto acids, and other catabolism metabolites.

10.
Food Funct ; 11(12): 10758-10773, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-33231591

ABSTRACT

Obesity-related metabolic syndrome has been linked with gut microbiome dysbiosis while dietary fibre (DF) and protein can modify the gut microbial ecosystem and metabolism. After 20-weeks of high-fat fructose-rich diet feeding for the development of obesity, forty-three 30-week old Göttingen Minipigs (31 ± 4.0 kg body weight) were allocated to one of the four diets with low or high DF and protein contents in a two by two factorial design and digesta were collected from the intestinal segments of minipigs after 8 weeks at libitum feeding. High DF content increased (P < 0.001) while high protein content decreased (P = 0.004) the content of non-starch polysaccharides (NSP) in all intestinal segments. Arabinoxylan (AX) as proportion of NSP was higher with high DF (P < 0.001) but decreased from the distal small intestine to the mid colon (P < 0.001). High DF increased the relative abundance of Blautia, Faecalibacterium and Peptococcus in the caecum, the mid colon and faeces, reduced the intestinal concentrations of total short-chain fatty acids (SCFA) (P = 0.020) and acetate (P = 0.011) but slightly increased butyrate pools in the large intestine (P≤ 0.050) compared to low DF. High protein increased the SCFA (P = 0.026) and propionate (P = 0.044) concentrations in the gut. High DF induced a lower increase in the BCFA concentration and proportion throughout the colon (P < 0.001). The butyrate concentrations in plasma from the jugular vein were increased with high DF diets (P = 0.031), whereas the propionate concentrations were increased (P < 0.001) and succinate were decreased (P = 0.001) with high protein diets compared with low protein diets. In conclusion, AX in the high DF diets was continuously degraded up to the mid-colon, associated with enriched butyrate-producing bacteria and slightly improved butyrate production, while protein fermentation was attenuated by high DF and high protein did not show prebiotic effects in this obese minipig model.


Subject(s)
Diet, High-Fat/adverse effects , Dietary Carbohydrates/adverse effects , Dietary Fiber/administration & dosage , Dietary Proteins/administration & dosage , Fatty Acids, Volatile/metabolism , Microbiota/drug effects , Obesity/metabolism , Animal Feed , Animal Nutritional Physiological Phenomena , Animals , Body Weight , Colon/metabolism , Diet , Feces/microbiology , Fermentation , Fructose , Intestine, Large/metabolism , Male , Swine , Swine, Miniature , Xylans/metabolism
11.
Foods ; 9(9)2020 Sep 22.
Article in English | MEDLINE | ID: mdl-32971915

ABSTRACT

The relationship between in vitro and in vivo starch digestion kinetics was studied in portal vein catheterised pigs fed breads varying in dietary fibre (DF) content and composition. The breads were a low DF white wheat bread, two high DF whole grain rye breads without and with whole kernels and two experimental breads with added arabinoxylan or oat ß-glucan concentrates, respectively. In vitro, samples were collected at 0, 5, 10, 15, 30, 60, 120 and 180 min and the cumulative hydrolysis curve for starch was modelled, whereas the in vivo cumulative absorption models for starch were based on samples taken every 15 min up to 60 min and then every 30 min up to 240 min. The starch hydrolysis rate in vitro (0.07 to 0.16%/min) was far higher than the rate of glucose appearance in vivo (0.017 to 0.023% absorbed starch/min). However, the ranking of the breads was the same in vitro and in vivo and there was a strong relationship between the kinetic parameters.

12.
Br J Nutr ; : 1-13, 2020 Aug 11.
Article in English | MEDLINE | ID: mdl-32778179

ABSTRACT

The effects of dietary fibre (DF) and protein on insulin response, lipidaemia and inflammatory biomarkers were studied in a model experiment with juvenile obese Göttingen minipigs. After 20 weeks feeding on a high-fat fructose-rich low-DF diet, forty-three 30-week-old minipigs (31·3 (sem 4·0) kg body weight) were allocated to low- or high-DF and -protein diets for 8 weeks in a 2 × 2 factorial design. High DF contents decreased (P = 0·006) while high protein increased (P < 0·001) the daily gain. High protein contents increased fasting plasma concentrations of glucose (P = 0·008), NEFA (P = 0·015), ghrelin (P = 0·008) and non-fasting LDL:HDL ratios (P = 0·015). High DF increased ghrelin (P = 0·036) and C-peptide levels (P = 0·011) in the non-fasting state. High protein increased the gene expression of fructose-bisphosphatase 1 in liver tissue (P = 0·043), whereas DF decreased fatty acid synthase expression in adipose tissue (P = 0·035). Interactions between DF and protein level were observed in the expression of leptin receptor in adipose tissue (P = 0·031) and of PPARγ in muscle (P = 0·018) and adipose tissue (P = 0·004). In conclusion, high DF intake reduced weight gain and had potential benefit on ß-cell secretory function, but without effect on the lipid profile in this young obese model. High dietary protein by supplementing with whey protein did not improve insulin sensitivity or lipidaemia, and combining high DF with high protein did not alleviate the risk of metabolic abnormalities.

13.
J Control Release ; 322: 470-485, 2020 06 10.
Article in English | MEDLINE | ID: mdl-32243977

ABSTRACT

Crossing the intestinal mucus layer remains a great hurdle in oral drug delivery. The viscous mucus gel protects the body from pathogens but simultaneously traps many types of delivery vehicles, limiting their therapeutic efficacy. We report the assembly of mucopenetrating PEG-based polymer-lipid hybrid vesicles encapsulated in mucoadhesive alginate carriers aiming to increase their residence time in the intestine. The stability of the formulations was evaluated in simulated gastrointestinal conditions, showing negligible subunit leakage in the gastric fluid but a substantial release in the intestinal fluid. Mucopenetration of the free and encapsulated subunits was first demonstrated in vitro in a microfluidic set-up filled with reconstituted porcine mucus and in a mucus-covered co-culture of Caco-2 cells and HT29-MTX-E12 cells. Finally, the free and encapsulated subunits remained adhered in close proximity to the intestinal epithelium after oral administration to rats while the alginate carriers were washed away. In conclusion, the double-encapsulated system with combined mucoadhesive and mucopenetrating properties is a promising alternative drug carrier for oral delivery.


Subject(s)
Alginates , Polymers , Administration, Oral , Animals , Caco-2 Cells , Drug Carriers , Humans , Intestinal Mucosa , Lipids , Rats , Swine
14.
Nutrients ; 10(10)2018 Oct 13.
Article in English | MEDLINE | ID: mdl-30322146

ABSTRACT

A major challenge in affluent societies is the increase in disorders related to gut and metabolic health. Chronic over nutrition by unhealthy foods high in energy, fat, and sugar, and low in dietary fibre is a key environmental factor responsible for this development, which may cause local and systemic inflammation. A low intake of dietary fibre is a limiting factor for maintaining a viable and diverse microbiota and production of short-chain fatty acids in the gut. A suppressed production of butyrate is crucial, as this short-chain fatty acid (SCFA) can play a key role not only in colonic health and function but also at the systemic level. At both sites, the mode of action is through mediation of signalling pathways involving nuclear NF-κB and inhibition of histone deacetylase. The intake and composition of dietary fibre modulate production of butyrate in the large intestine. While butyrate production is easily adjustable it is more variable how it influences gut barrier function and inflammatory markers in the gut and periphery. The effect of butyrate seems generally to be more consistent and positive on inflammatory markers related to the gut than on inflammatory markers in the peripheral tissue. This discrepancy may be explained by differences in butyrate concentrations in the gut compared with the much lower concentration at more remote sites.


Subject(s)
Bacteria/metabolism , Butyrates/metabolism , Diet, Healthy , Dietary Fiber/administration & dosage , Gastrointestinal Microbiome , Inflammation/prevention & control , Intestinal Absorption , Intestines/microbiology , Animals , Dietary Fiber/metabolism , Humans , Inflammation/metabolism , Inflammation/microbiology , Inflammation Mediators/metabolism , Nutritive Value , Permeability , Recommended Dietary Allowances , Signal Transduction
15.
PLoS One ; 12(10): e0185927, 2017.
Article in English | MEDLINE | ID: mdl-28982156

ABSTRACT

Increased dietary fiber (DF) fermentation and short-chain fatty acid (SCFA) production may stimulate peptide tyrosine-tyrosine (PYY) secretion. In this study, the effects of hindgut SCFA production on postprandial PYY plasma levels were assessed using different experimental diets in a porto-arterial catheterized pig model. The pigs were fed experimental diets varying in source and levels of DF for one week in 3×3 Latin square designs. The DF sources were whole-wheat grain, wheat aleurone, rye aleurone-rich flour, rye flakes, and resistant starch. Postprandial blood samples were collected from the catheters and analyzed for PYY levels and net portal appearance (NPA) of PYY was correlated to NPA of SCFA. No significant effects of diets on NPA of PYY were observed (P > 0.05), however, resistant starch supplementation increased postprandial NPA of PYY levels by 37 to 54% compared with rye-based and Western-style control diets (P = 0.19). This increase was caused by higher mesenteric artery and portal vein PYY plasma levels (P < 0.001) and was independent of SCFA absorption (P > 0.05). The PYY levels were higher in response to the second daily meal compared with the first daily meal (P < 0.001), but similar among diets (P > 0.10). In conclusion, the increased postprandial PYY responses in pigs fed with different levels and sources of DF are not caused by an increased SCFA absorption and suggest that other mechanisms such as neural reflexes and possibly an increased flow of digesta in the small intestine may be involved. The content of DF and SCFA production did not affect PYY levels.


Subject(s)
Dietary Supplements , Fatty Acids, Volatile/blood , Peptides/metabolism , Postprandial Period , Starch/administration & dosage , Tyrosine/metabolism , Animals , Swine
16.
J Nutr ; 147(5): 825-834, 2017 05.
Article in English | MEDLINE | ID: mdl-28298535

ABSTRACT

Background: The incidence of type 2 diabetes (T2D) is increasing worldwide, and nutritional management of circulating glucose may be a strategic tool in the prevention of T2D.Objective: We studied whether enzymatically modified waxy maize with an increased degree of branching delayed the onset of diabetes in male Zucker diabetic fatty (ZDF) rats.Methods: Forty-eight male ZDF rats, aged 5 wk, were divided into 4 groups and fed experimental diets for 9 wk that contained 52.95% starch: gelatinized corn starch (S), glucidex (GLU), resistant starch (RS), or enzymatically modified starch (EMS). Blood glucose after feed deprivation was assessed every second week; blood samples taken at run-in and at the end of the experiment were analyzed for glycated hemoglobin (HbA1c) and plasma glucose, insulin, and lipids. During weeks 2 and 8, urine was collected for metabolomic analysis.Results: Based on blood glucose concentrations in feed-deprived rats, none of the groups developed diabetes. However, in week 9, plasma glucose after feed deprivation was significantly lower in rats fed the S and RS diets (13.5 mmol/L) than in rats fed the GLU and EMS diets (17.0-18.9 mmol/L), and rats fed RS had lower HbA1c (4.9%) than rats fed the S, GLU, and EMS (5.6-6.1%) diets. The homeostasis model assessment of insulin resistance was significantly lower in rats fed RS than in rats fed the other diets (185 compared with 311-360), indicating that rats fed the S, GLU, and EMS diets were diabetic, and a 100% higher urine excretion during week 8 in rats fed the GLU and EMS diets than that of rats fed S and RS showed that they were diabetic. Urinary nontargeted metabolomics revealed that the diabetic state of rats fed S, GLU, and EMS diets influenced microbial metabolism, as well as amino acid, lipid, and vitamin metabolism.Conclusions: EMS did not delay the onset of diabetes in ZDF rats, whereas rats fed RS showed no signs of diabetes.


Subject(s)
Blood Glucose/metabolism , Diabetes Mellitus, Type 2/prevention & control , Diet , Dietary Carbohydrates/therapeutic use , Starch/therapeutic use , Zea mays/chemistry , Amino Acids/urine , Animals , Diabetes Mellitus, Type 2/blood , Dietary Carbohydrates/pharmacology , Enzymes/metabolism , Glycated Hemoglobin/metabolism , Insulin/blood , Insulin Resistance , Lipids/urine , Male , Metabolomics , Rats, Zucker , Starch/pharmacology , Vitamins/urine , Waxes
17.
Mol Nutr Food Res ; 61(7)2017 07.
Article in English | MEDLINE | ID: mdl-27813269

ABSTRACT

Epidemiological studies have linked whole-grain (WG) cereal consumption to a reduced risk of developing several chronic diseases-coronary heart disease, arteriosclerosis, type-2 diabetes, and some form of cancers. The underlying physiological mechanisms behind the protective effects of WG are unclear, but can most likely be assigned to a concerted action of dietary fiber (DF) and a wide variety of phytochemicals. Physiologically, it is important that soluble nonstarch polysaccharides contribute to higher viscosity in the small intestine as this may influence rate and extent of digestion and absorption. Associated with the DF matrix of cereals is an array of nonnutritive constituents predominantly concentrated in the bran fraction. Among them, the phenolic phytochemicals, benzoic acid and cinnamic derivatives and lignans, are of importance in a nutritional-health perspective. Only a small fraction of the phenolics is absorbed in the small intestine, but the availability can be increased by bioprocessing. The major part, however, is passed to the large intestine where the microbiota, which degrade and metabolize DF to SCFAs and gases, also convert the phenolic compounds into a range of other metabolites that are absorbed into the body and with the capability of influencing the metabolism at the cellular level.


Subject(s)
Dietary Fiber/pharmacology , Edible Grain/chemistry , Phytochemicals/pharmacology , Benzoic Acid/analysis , Cinnamates/analysis , Dietary Fiber/analysis , Food Handling , Humans , Intestinal Absorption/drug effects , Intestine, Large/drug effects , Intestine, Large/physiology , Intestine, Small/drug effects , Intestine, Small/physiology , Lignans/analysis , Lignans/chemistry , Phytochemicals/chemistry
18.
J Proteome Res ; 14(8): 3095-110, 2015 Aug 07.
Article in English | MEDLINE | ID: mdl-26133160

ABSTRACT

The effects of increased intake of dietary fiber as either whole grain rye or as resistant starch compared to a typical low dietary fiber Western-style diet on the metabolomics responses were studied in gastrointestinal content and tissue, peripheral plasma, and urine using a multicompartmental nontargeted liquid chromatography-mass spectrometry (LC-MS) approach in pigs. Both unsupervised and supervised multivariate analyses were used to study differences between the intervention groups, revealing significant effects of the dietary intervention on gastrointestinal contents and urine metabolites. Consumption of a diet composed of whole grain rye flakes and enzyme treated wheat bran increased gastrointestinal content of novel sulfate- and acetic acid-conjugated oxylipins, and urinary secretion of phenolic compounds. Furthermore, potential gastrointestinal and urinary biomarkers for consumption of resistant starch, whole grain rye, and a low dietary fiber intake were detected using multiblock analysis. This study provides insight into microbial fermentation products in the gastrointestinal tract and suggests a potential role in sulfate conjugation of metabolites on the bioavailability of ingested nutrients.


Subject(s)
Dietary Fiber/pharmacology , Gastrointestinal Contents/drug effects , Metabolome/drug effects , Metabolomics/methods , Oxylipins/metabolism , Whole Grains , Animals , Chromatography, Liquid , Diet , Dietary Fiber/administration & dosage , Female , Gastrointestinal Contents/chemistry , Male , Mass Spectrometry , Organ Specificity , Oxylipins/chemistry , Sulfates/chemistry , Swine
20.
J Agric Food Chem ; 63(10): 2725-33, 2015 Mar 18.
Article in English | MEDLINE | ID: mdl-25716171

ABSTRACT

The net absorption of betaine and choline was determined for 4 h after the first meal of the day in three experiments with porto-arterial catheterized pigs in which betaine was added as a supplement to a low-betaine diet (n=4 pigs) and compared to the net absorption of betaine and choline from high-fiber breads differing in amount and source of dietary fiber (two experiments, n=6 pigs each). Plasma betaine peaked after 30 min when betaine was fed as a supplement, whereas it peaked after 120-180 min when high-fiber breads were fed. Plasma betaine showed no diet×time interaction after feeding with high-fiber breads, indicating that the absorption kinetic did not differ between fiber sources. The net absorption of choline was not affected by the experimental diets. In conclusion, betaine in cereal sources has to be liberated from the matrix prior to absorption, causing delayed absorption.


Subject(s)
Betaine/metabolism , Dietary Fiber/metabolism , Dietary Supplements/analysis , Edible Grain/metabolism , Swine/metabolism , Animals , Betaine/chemistry , Kinetics
SELECTION OF CITATIONS
SEARCH DETAIL
...