Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters










Publication year range
1.
Mater Horiz ; 11(10): 2494-2505, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38477151

ABSTRACT

Atomically precise copper nanoclusters (NCs) are an emerging class of nanomaterials for catalysis. Their versatile core-shell architecture opens the possibility of tailoring their catalytically active sites. Here, we introduce a core-shell copper nanocluster (CuNC), [Cu29(StBu)13Cl5(PPh3)4H10]tBuSO3 (StBu: tert-butylthiol; PPh3: triphenylphosphine), Cu29NC, with multiple accessible active sites on its shell. We show that this nanocluster is a versatile catalyst for C-heteroatom bond formation (C-O, C-N, and C-S) with several advantages over previous Cu systems. When supported, the cluster can also be reused as a heterogeneous catalyst without losing its efficiency, making it a hybrid homogeneous and heterogeneous catalyst. We elucidated the atomic-level mechanism of the catalysis using density functional theory (DFT) calculations based on the single crystal structure. We found that the cooperative action of multiple neighboring active sites is essential for the catalyst's efficiency. The calculations also revealed that oxidative addition is the rate-limiting step that is facilitated by the neighboring active sites of the Cu29NC, which highlights a unique advantage of nanoclusters over traditional copper catalysts. Our results demonstrate the potential of nanoclusters for enabling the rational atomically precise design and investigation of multi-site catalysts.

2.
ACS Nano ; 18(14): 10196-10205, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38526994

ABSTRACT

Although numerous polymer-based composites exhibit excellent dielectric permittivity, their dielectric performance in various applications is severely hampered by high dielectric loss induced by interfacial space charging and a leakage current. Herein, we demonstrate that embedding molten salt etched MXene into a poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) (P(VDF-TrFE-CFE))/poly(methyl methacrylate) (PMMA) hybrid matrix induces strong interfacial interactions, forming a close-packed inner polymer layer and leading to significantly suppressed dielectric loss and markedly increased dielectric permittivity over a broad frequency range. The intensive molecular interaction caused by the dense electronegative functional terminations (-O and -Cl) in MXene results in restricted polymer chain movement and dense molecular arrangement, which reduce the transportation of the mobile charge carriers. Consequently, compared to the neat polymer, the dielectric constant of the composite with 2.8 wt % MXene filler increases from ∼52 to ∼180 and the dielectric loss remains at the same value (∼0.06) at 1 kHz. We demonstrate that the dielectric loss suppression is largely due to the formation of close-packed interfaces between the MXene and the polymer matrix.

3.
J Am Chem Soc ; 146(6): 4144-4152, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38315569

ABSTRACT

Circularly polarized light-emitting diodes (CP-LEDs) are critical for next-generation optical technologies, ranging from holography to quantum information processing. Currently deployed chiral luminescent materials, with their intricate synthesis and processing and limited efficiency, are the main bottleneck for CP-LEDs. Chiral metal nanoclusters (MNCs) are potential CP-LED materials, given their ease of synthesis and processability as well as diverse structures and excited states. However, their films are usually plagued by inferior electronic quality and aggregation-caused photoluminescence quenching, necessitating their incorporation into host materials; without such a scheme, MNC-based LEDs exhibit external quantum efficiencies (EQEs) < 10%. Herein, we achieve an efficiency leap for both CP-LEDs and cluster-based LEDs by using novel chiral MNCs with aggregation-induced emission enhancement. CP-LEDs using enantiopure MNC films attain EQEs of up to 23.5%. Furthermore, by incorporating host materials, the devices yield record EQEs of up to 36.5% for both CP-LEDs and cluster-based LEDs, along with electroluminescence dissymmetry factors (|gEL|) of around 1.0 × 10-3. These findings open a new avenue for advancing chiral light sources for next-generation optoelectronics.

4.
ACS Biomater Sci Eng ; 10(1): 391-404, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38095213

ABSTRACT

The efficacy of neural electrode stimulation and recording hinges significantly on the choice of a neural electrode interface material. Transition metal carbides (TMCs), particularly titanium carbide (TiC), have demonstrated exceptional chemical stability and high electrical conductivity. Yet, the fabrication of TiC thin films and their potential application as neural electrode interfaces remains relatively unexplored. Herein, we present a systematic examination of TiC thin films synthesized through nonreactive radio frequency (RF) magnetron sputtering. TiC films were optimized toward high areal capacitance, low impedance, and stable electrochemical cyclability. We varied the RF power and deposition pressure to pinpoint the optimal properties, focusing on the deposition rate, surface roughness, crystallinity, and elemental composition to achieve high areal capacitance and low impedance. The best-performing TiC film showed an areal capacitance of 475 µF/cm2 with a capacitance retention of 93% after 5000 cycles. In addition, the electrochemical performance of the optimum film under varying scanning rates demonstrated a stable electrochemical performance even under dynamic and fast-changing stimulation conditions. Furthermore, the in vitro cell culture for 3 weeks revealed excellent biocompatibility, promoting cell growth compared with a control substrate. This work presents a novel contribution, highlighting the potential of sputtered TiC thin films as robust neural electrode interface materials.


Subject(s)
Cell Culture Techniques , Electrodes
5.
Adv Mater ; 36(3): e2305326, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37907810

ABSTRACT

Superconductivty has recently been induced in MXenes through surface modification. However, the previous reports have mostly been based on powders or cold-pressed pellets, with no known reports on the intrinsic superconsucting properties of MXenes at the nanoale. Here, it is developed a high-temperature atomic exchange process in NH3 atmosphere which induces superconductivity in either singleflakes or thin films of Nb2 CTx MXene. The exchange process between nitrogen atoms and fluorine, carbon, and oxygen atoms in the MXene lattice and related structural adjustments are studied using both experiments and density functional theory. Using either single-flake or thin-film devices, an anisotropic magnetic response of the 2D superconducting transformation has been successfully revealed. The anisotropic superconductivity is further demonstrated using superconducting thin films uniformly deposited over a 4 in. wafers, which opens up the possibility of scalable MXene-based superconducting devices.

6.
Small ; : e2306535, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38063843

ABSTRACT

Colloidal quantum dots (CQDs) are emerging materials for short-wave infrared (SWIR, ≈1100-3000 nm) photodetectors, which are technologically important for a broad array of applications. Unfortunately, the most developed SWIR CQD systems are Pb and Hg chalcogenides; their toxicity and regulated compositions limit their applications. InSb CQD system is a potential environmentally friendly alternative, whose bandgap in theory, is tunable via quantum confinement across the SWIR spectrum. However, InSb CQDs are difficult to exploit, due to their complex syntheses and uncommon reactive precursors, which greatly hinder their application and study. Here, a one-pot synthesis strategy is reported using commercially available precursors to synthesize-under standard colloidal synthesis conditions-high-quality, size-tunable InSb CQDs. With this strategy, the large Bohr exciton radius of InSb can be exploited for tuning the bandgap of the CQDs over a wide range of wavelengths (≈1250-1860 nm) across the SWIR region. Furthermore, by changing the surface ligands of the CQDs from oleic acid (OA) to 1-dodecanthiol (DDT), a ≈20-fold lengthening in the excited-state lifetime, efficient carrier multiplication, and slower carrier annihilation are observed. The work opens a wide range of SWIR applications to a promising class of Pb- and Hg-free CQDs.

7.
ACS Nano ; 17(22): 23094-23102, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-37955579

ABSTRACT

InAs colloidal quantum dots (CQDs) have emerged as candidate lead- and mercury-free solution-processed semiconductors for infrared technology due to their appropriate bulk bandgap, which can be tuned by quantum confinement, and promising charge-carrier transport properties. However, the lack of suitable arsenic precursors and readily accessible synthesis conditions have limited InAs CQDs to smaller sizes (<7 nm), with bandgaps largely restricted to <1400 nm in the near-infrared spectral window. Conventional InAs CQD synthesis requires highly reactive, hazardous arsenic precursors, which are commercially scarce, making the synthesis hard to control and study. Here, we present a controlled synthesis strategy (using only readily available and less reactive precursors) to overcome the practical wavelength limitation of InAs CQDs, achieving monodisperse InAs nanorod CQDs with bandgaps tunable from ∼1200 to ∼1800 nm, thus crossing deep into the short-wave infrared (SWIR) region. By controlling the reactivity through in situ precursor complexation, we isolate the reaction mechanism, producing InAs nanorod CQDs that display narrow excitonic features and efficient carrier multiplication. Our work enables InAs CQDs for a wider range of SWIR applications.

8.
Nat Commun ; 14(1): 5490, 2023 Sep 07.
Article in English | MEDLINE | ID: mdl-37679354

ABSTRACT

The α-molybdenum trioxide has attracted much attention for proton storage owing to its easily modified bilayer structure, fast proton insertion kinetics, and high theoretical specific capacity. However, the fundamental science of the proton insertion mechanism in α-molybdenum trioxide has not been fully understood. Herein, we uncover a three-proton intercalation mechanism in α-molybdenum trioxide using a specially designed phosphoric acid based liquid crystalline electrolyte. The semiconductor-to-metal transition behavior and the expansion of the lattice interlayers of α-molybdenum trioxide after trapping one mole of protons are verified experimentally and theoretically. Further investigation of the morphology of α-molybdenum trioxide indicates its fracture behavior upon the proton intercalation process, which creates diffusion channels for hydronium ions. Notably, the observation of an additional redox behavior at low potential endows α-molybdenum trioxide with an improved specific discharge capacity of 362 mAh g-1.

9.
ACS Nano ; 17(11): 10010-10018, 2023 Jun 13.
Article in English | MEDLINE | ID: mdl-37249346

ABSTRACT

Growing continuous monolayer films of transition-metal dichalcogenides (TMDs) without the disruption of grain boundaries is essential to realize the full potential of these materials for future electronics and optoelectronics, but it remains a formidable challenge. It is generally believed that controlling the TMDs orientations on epitaxial substrates stems from matching the atomic registry, symmetry, and penetrable van der Waals forces. Interfacial reconstruction within the exceedingly narrow substrate-epilayer gap has been anticipated. However, its role in the growth mechanism has not been intensively investigated. Here, we report the experimental conformation of an interfacial reconstructed (IR) layer within the substrate-epilayer gap. Such an IR layer profoundly impacts the orientations of nucleating TMDs domains and, thus, affects the materials' properties. These findings provide deeper insights into the buried interface that could have profound implications for the development of TMD-based electronics and optoelectronics.

10.
Adv Mater ; 35(22): e2211738, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36942383

ABSTRACT

Gate controllability is a key factor that determines the performance of GaN high electron mobility transistors (HEMTs). However, at the traditional metal-GaN interface, direct chemical interaction between metal and GaN can result in fixed charges and traps, which can significantly deteriorate the gate controllability. In this study, Ti3 C2 Tx MXene films are integrated into GaN HEMTs as the gate contact, wherein van der Waals heterojunctions are formed between MXene films and GaN without direct chemical bonding. The GaN HEMTs with enhanced gate controllability exhibit an extremely low off-state current (IOFF ) of 10-7 mA mm-1 , a record high ION /IOFF current ratio of ≈1013 (which is six orders of magnitude higher than conventional Ni/Au contact), a high off-state drain breakdown voltage of 1085 V, and a near-ideal subthreshold swing of 61 mV dec-1 . This work shows the great potential of MXene films as gate electrodes in wide-bandgap semiconductor devices.

11.
Nat Commun ; 13(1): 2960, 2022 May 26.
Article in English | MEDLINE | ID: mdl-35618799

ABSTRACT

Mn-based oxides are promising for the selective catalytic reduction (SCR) of NOx with NH3 at temperatures below 200 °C. There is a general agreement that combining Mn with another metal oxide, such as CeOx improves catalytic activity. However, to date, there is an unsettling debate on the effect of Ce. To solve this, here we have systematically investigated a large number of catalysts. Our results show that, at low-temperature, the intrinsic SCR activity of the Mn active sites is not positively affected by Ce species in intimate contact. To confirm our findings, activities reported in literature were surface-area normalized and the analysis do not support an increase in activity by Ce addition. Therefore, we can unequivocally conclude that the beneficial effect of Ce is textural. Besides, addition of Ce suppresses second-step oxidation reactions and thus N2O formation by structurally diluting MnOx. Therefore, Ce is still an interesting catalyst additive.

12.
ACS Appl Mater Interfaces ; 14(15): 17889-17898, 2022 Apr 20.
Article in English | MEDLINE | ID: mdl-35404567

ABSTRACT

Copper thiocyanate (CuSCN) is a p-type semiconductor that exhibits hole-transport and wide-band gap (∼3.9 eV) characteristics. However, the conductivity of CuSCN is not sufficiently high, which limits its potential application in optoelectronic devices. Herein, CuSCN thin films were exposed to chlorine using a dry etching system to enhance their electrical properties, yielding a maximum hole concentration of 3 × 1018 cm-3. The p-type CuSCN layer was then deposited onto an n-type gallium nitride (GaN) layer to form a prototypical ultraviolet-based photodetector. X-ray photoelectron spectroscopy further demonstrated the interface electronic structures of the heterojunction, confirming a favorable alignment for holes and electrons transport. The ensuing p-CuSCN/n-GaN heterojunction photodetector exhibited a turn-on voltage of 2.3 V, a responsivity of 1.35 A/W at -1 V, and an external quantum efficiency of 5.14 × 102% under illumination with ultraviolet light (peak wavelength of 330 nm). The work opens a new pathway for making a plethora of hybrid optoelectronic devices of inorganic and organic nature by using p-type CuSCN as the hole injection layer.

13.
Adv Mater ; 34(48): e2107370, 2022 Dec.
Article in English | MEDLINE | ID: mdl-34719808

ABSTRACT

It is very challenging to employ solution-processed conducting films in large-area ultrathin nanoelectronics. Here, spray-coated Ti3 C2 Tx MXene films as metal contacts are successfully integrated into sub-10 nm gate oxide 2D MoS2 transistor circuits. Ti3 C2 Tx films are spray coated on glass substrates followed by vacuum annealing. Compared to the as-prepared sample, vacuum annealed films exhibit a higher conductivity (≈11 000 S cm-1 ) and a lower work function (≈4.5 eV). Besides, the annealed Ti3 C2 Tx film can be patterned through a standard cleanroom process without peeling off. The annealed Ti3 C2 Tx film shows a better band alignment for n-type transport in MoS2 channel with small work function mismatch of 0.06 eV. The MoS2 film can be uniformly transferred on the patterned Ti3 C2 Tx surface and then readily processed through the cleanroom process. A large-area array of Ti3 C2 Tx MXene-MoS2 transistors is fabricated using different dielectric thicknesses and semiconducting channel sizes. High yield and stable performance for these transistor arrays even with an 8 nm-thick dielectric layer are demonstrated. Besides, several circuits are demonstrated, including rectifiers, negative-channel metal-oxide-semiconductor (NMOS) inverters, and voltage-shift NMOS inverters. Overall, this work indicates the tremendous potential for solution-processed Ti3 C2 Tx MXene films in large-area 2D nanoelectronics.

14.
J Phys Chem Lett ; 12(42): 10402-10409, 2021 Oct 28.
Article in English | MEDLINE | ID: mdl-34672588

ABSTRACT

Lead halide perovskites (LHPs) have attracted a tremendous amount of attention because of their applications in solar cells, lighting, and optoelectronics. However, the atomistic principles underlying their decomposition processes remain in large part obscure, likely due to the lack of precise information about their local structures and composition along regions with dimensions on the angstrom scale, such as crystal interfaces. Aberration-corrected scanning transmission electron microscopy combined with X-ray energy dispersive spectroscopy (EDS) is an ideal tool, in principle, for probing such information. However, atomic-resolution EDS has not been achieved for LHPs because of their instability under electron-beam irradiation. We report the fabrication of CsPbBr3 nanoplates with high beam stability through an interface-assisted regrowth strategy using cyanamide. The ultrahigh stability of the nanoplates primarily stems from two contributions: defect-healing self-assembly/regrowth processes and surface modulation by strong electron-withdrawing cyanamide molecules. The ultrahigh stability of as-prepared CsPbBr3 nanoplates enabled atomic-resolution EDS elemental mapping, which revealed atomically and elementally resolved details of the LHP nanostructures at an unprecedented level. While improving the stability of LHPs is critical for device applications, this work illustrates how improving the beam stability of LHPs is essential for addressing fundamental questions on structure-property relations in LHPs.

15.
ACS Appl Mater Interfaces ; 13(37): 44824-44832, 2021 Sep 22.
Article in English | MEDLINE | ID: mdl-34510885

ABSTRACT

Pharmaceutical, chemical, and food industries are actively implementing membrane nanofiltration modules in their processes to separate valuable products and recover solvents. Interfacial polymerization (IP) is the most widely used method to produce thin-film composite membranes for nanofiltration and reverse osmosis processes. Although membrane processes are considered green and environmentally friendly, membrane fabrication has still to be further developed in such direction. For instance, the emission of volatile solvents during membrane production in the industry has to be carefully controlled for health reasons. Greener solvents are being proposed for phase-separation membrane manufacture. For the IP organic phase, the proposition of greener alternatives is in an early stage. In this work, we demonstrate the preparation of a high-performing composite membrane employing zero vapor pressure and naturally extracted oleic acid as the IP organic phase. Its long hydrophobic chain ensures intrinsic low volatility and acid monomer dissolution, while the polar head induces a unique self-assembly structure during the film formation. Membranes prepared by this technique were selective for small molecules with a molecular weight cutoff of 650 g mol-1 and a high permeance of ∼57 L m-2 h-1 bar-1.

16.
J Am Chem Soc ; 143(29): 11026-11035, 2021 Jul 28.
Article in English | MEDLINE | ID: mdl-34255513

ABSTRACT

Precise identification and in-depth understanding of defects in nanomaterials can aid in rationally modulating defect-induced functionalities. However, few studies have explored vacancy defects in ligand-stabilized metal nanoclusters with well-defined structures, owing to the substantial challenge of synthesizing and isolating such defective metal nanoclusters. Herein, a novel defective copper hydride nanocluster, [Cu36H10(PET)24(PPh3)6Cl2] (Cu36; PET: phenylethanethiolate; PPh3: triphenylphosphine), is successfully synthesized at the gram scale via a simple one-pot reduction method. Structural analysis reveals that Cu36 is a distorted half cubic nanocluster, evolved from the perfect Nichol's half cube. The two surface copper vacancies in Cu36 are found to be the principal imperfections, which result in some structural adjustments, including copper atom reconstruction near the vacancies as well as ligand modifications (e.g., substitution, migration, and exfoliation). Density functional theory calculations imply that the above-mentioned defects have a considerable influence on the electronic structure and properties. The modeling suggests that the formation of defective Cu36 rather than the perfect half cube is driven by the enlargement of the energy gap between the highest occupied molecular orbital and the lowest unoccupied molecular orbital of the nanocluster. The structural evolution induced by the surface copper atom vacancies provides atomically precise insights into the defect-induced readjustment of the local structure and introduces new avenues for understanding the chemistry of defects in nanomaterials.

17.
ACS Appl Mater Interfaces ; 13(28): 33335-33344, 2021 Jul 21.
Article in English | MEDLINE | ID: mdl-34236856

ABSTRACT

Smart solar-blind UV-C band photodetectors suffer from low responsivity in a self-powered mode. Here, we address this issue by fabricating a novel enhanced solar-blind UV-C photodetector array based on solution-processed n-ZnO quantum dots (QDs) functionalized by p-CuO micro-pyramids. Self-assembled catalyst-free p-CuO micro-pyramid arrays are fabricated on a pre-ablated Si substrate by pulsed laser deposition without a need for a catalyst layer or seeding, while the solution-processed n-ZnO QDs are synthesized by the femtosecond-laser ablation in liquid technique. The photodetector is fabricated by spray-coating ZnO QDs on a CuO micro-pyramid array. The photodetector performance is optimized via a p-n junction structure as both p-ZnO QDs and p-CuO micro-pyramid layers are characterized by wide band gap energies. Two photodetectors (with and without CuO micro-pyramids) are fabricated to show the role of p-CuO in enhancing the device performance. The n-ZnO QD/p-CuO micro-pyramid/Si photodetector is characterized by a superior photo-responsivity of ∼956 mA/W at 244 nm with a faster photoresponse (<80 ms) and 260 nm cut-off compared to ZnO QDs/Si photodetectors, confirming that the p-CuO micro-pyramids enhance the device performance. The self-powered photoresponse with a high photo-responsivity of ∼29 mA/W is demonstrated. These high-responsivity solar-bind UV-C photodetector arrays can be used for a wide range of applications.

18.
ACS Appl Mater Interfaces ; 13(22): 26421-26430, 2021 Jun 09.
Article in English | MEDLINE | ID: mdl-34047542

ABSTRACT

Graphite has become a critical material because of its essential role in the lithium-ion battery (LIB) industry. However, the synthesis of graphite requires an energy-intensive thermal treatment. Also, when used in sodium-ion and potassium-ion batteries (SIBs and PIBs), the graphite anode shows poor capacities and cycling stability, which hinders the development of next-generation battery technologies. Finding suitable anode materials for commercial alkali metal-ion batteries is not only urgent for the energy storage industry, but is also important for economic and sustainable development. In this work, we use fly ash carbon (FAC), a residue of crude oil combustion, as an anode material for alkali metal-ion batteries. The FAC anodes show relatively high capacities and excellent cycling stability. The charge storage mechanism of FAC anode is shown to be intercalation coupled with redox reactions of oxygen functional groups. This work shows that FAC is a promising scalable anode material for alkali metal-ion batteries.

19.
Small ; 17(27): e2006839, 2021 07.
Article in English | MEDLINE | ID: mdl-33739606

ABSTRACT

Due to their atomically precise structure, photoluminescent copper nanoclusters (Cu NCs) have emerged as promising materials in both fundamental studies and technological applications, such as bio-imaging, cell labeling, phototherapy, and photo-activated catalysis. In this work, a facile strategy is reported for the synthesis of a novel Cu NCs coprotected by thiolate and phosphine ligands, formulated as [Cu15 (PPh3 )6 (PET)13 ]2+ , which exhibits bright emission in the near-infrared (NIR) region (≈720 nm) and crystallization-induced emission enhancement (CIEE) phenomenon. Single crystal X-ray crystallography shows that the NC possesses an extraordinary distorted trigonal antiprismatic Cu6 core and a, unique among metal clusters, "tri-blade fan"-like structure. An in-depth structural investigation of the ligand shell combined with density functional theory calculations reveal that the extended CH···π and π-π intermolecular ligand interactions significantly restrict the intramolecular rotations and vibrations and, thus, are a major reason for the CIEE phenomena. This study provides a strategy for the controllable synthesis of structurally defined Cu NCs with NIR luminescence, which enables essential insights into the origins of their optical properties.


Subject(s)
Copper , Luminescence , Crystallization , Ligands , Positron-Emission Tomography
20.
ACS Appl Mater Interfaces ; 12(48): 53932-53941, 2020 Dec 02.
Article in English | MEDLINE | ID: mdl-33203211

ABSTRACT

Recent advancements in gallium oxide (Ga2O3)-based heterostructures have allowed optoelectronic devices to be used extensively in the fields of power electronics and deep-ultraviolet photodetection. While most previous research has involved realizing single-crystalline Ga2O3 layers on native substrates for high conductivity and visible-light transparency, presented and investigated herein is a single-crystalline ß-Ga2O3 layer grown on an α-Al2O3 substrate through an interfacial γ-In2O3 layer. The single-crystalline transparent conductive oxide layer made of wafer-scalable γ-In2O3 provides high carrier transport, visible-light transparency, and antioxidation properties that are critical for realizing vertically oriented heterostructures for transparent oxide photonic platforms. Physical characterization based on X-ray diffraction and high-resolution transmission electron microscopy imaging confirms the single-crystalline nature of the grown films and the crystallographic orientation relationships among the monoclinic ß-Ga2O3, cubic γ-In2O3, and trigonal α-Al2O3, while the elemental composition and sharp interfaces across the heterostructure are confirmed by Rutherford backscattering spectrometry. Furthermore, the energy-band offsets are determined by X-ray photoelectron spectroscopy at the ß-Ga2O3/γ-In2O3 interface, elucidating a type-II heterojunction with conduction- and valence-band offsets of 0.16 and 1.38 eV, respectively. Based on the single-crystalline ß-Ga2O3/γ-In2O3/α-Al2O3 all-oxide heterostructure, a vertically oriented DUV photodetector is fabricated that exhibits a high photoresponsivity of 94.3 A/W, an external quantum efficiency of 4.6 × 104%, and a specific detectivity of 3.09 × 1012 Jones at 250 nm. The present demonstration lays a strong foundation for and paves the way to future all-oxide-based transparent photonic platforms.

SELECTION OF CITATIONS
SEARCH DETAIL
...