Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 173
Filter
1.
Cell Mol Life Sci ; 81(1): 331, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39107572

ABSTRACT

The rising incidences of atherosclerosis have necessitated efforts to identify novel targets for therapeutic interventions. In the present study, we observed increased expression of the mechanosensitive calcium channel Piezo1 transcript in mouse and human atherosclerotic plaques, correlating with infiltration of PIEZO1-expressing macrophages. In vitro administration of Yoda1, a specific agonist for PIEZO1, led to increased foam cell apoptosis and enhanced phagocytosis by macrophages. Mechanistically, PIEZO1 activation resulted in intracellular F-actin rearrangement, elevated mitochondrial ROS levels and induction of mitochondrial fragmentation upon PIEZO1 activation, as well as increased expression of anti-inflammatory genes. In vivo, ApoE-/- mice treated with Yoda1 exhibited regression of atherosclerosis, enhanced stability of advanced lesions, reduced plaque size and necrotic core, increased collagen content, and reduced expression levels of inflammatory markers. Our findings propose PIEZO1 as a novel and potential therapeutic target in atherosclerosis.


Subject(s)
Apoptosis , Atherosclerosis , Foam Cells , Ion Channels , Macrophages , Phagocytosis , Animals , Ion Channels/metabolism , Ion Channels/genetics , Atherosclerosis/metabolism , Atherosclerosis/pathology , Atherosclerosis/genetics , Mice , Foam Cells/metabolism , Foam Cells/pathology , Humans , Macrophages/metabolism , Mice, Inbred C57BL , Thiophenes/pharmacology , Male , Reactive Oxygen Species/metabolism , Plaque, Atherosclerotic/pathology , Plaque, Atherosclerotic/metabolism , Plaque, Atherosclerotic/genetics , Mitochondria/metabolism , Pyrazines , Thiadiazoles
2.
bioRxiv ; 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38979218

ABSTRACT

Background: Carotid atherosclerosis is a multifaceted disease orchestrated by a myriad of cell-cell communication that drives progression along a clinical continuum (asymptomatic to symptomatic). Extracellular vesicles (EVs) are lipid bilayer membrane-enclosed cell-derived nanoparticles that represent a new paradigm in cellular communication. Little is known about their biological cargo, cellular origin/destination, and functional roles in human atherosclerotic plaque. Methods: EVs were enriched via size exclusion chromatography from human carotid endarterectomy samples dissected into plaque and marginal zones (n= 29 patients, paired plaque and marginal zone; symptomatic n=16, asymptomatic n=13), with further density gradient ultracentrifugation for proteomic analysis. EV cargoes were assessed via whole transcriptome miRNA sequencing and mass spectrometry-based proteomics. EV multi-omics were integrated with publicly available bulk and single cell RNA-sequencing (scRNA-seq) datasets to predict EV cellular origin and ligand-receptor interactions and multi-modal biological network integration of EV-cargo was completed. EV functional impact was assessed with endothelial angiogenesis assays. Results: Human carotid plaques contained greater quantities of EVs than adjacent marginal zones. EV-miRNA and protein content was different in diseased plaque versus adjacent marginal zones, with differential functions in key atherogenic pathways. EV cellular origin analysis suggested that tissue EV signatures originated from endothelial cells (EC), smooth muscle cells (SMC), and immune cells. Furthermore, EV signatures from SMCs and immune cells were most enriched in the marginal and plaque zones, respectively. Integrated tissue vesiculomics and scRNA-seq indicated complex EV-vascular cell communication strategies that changed with disease progression and plaque vulnerability (i.e., symptomatic disease). Plaques from symptomatic patients, but not asymptomatic patients, were characterized by increased involvement of endothelial pathways and more complex ligand-receptor interactions, relative to their marginal zones. Plaque-EVs were predicted to mediate communication with ECs. Pathway enrichment analysis delineated a strong endothelial signature with potential roles in angiogenesis and neovascularization - well-known indices of plaque instability. This was corroborated functionally, wherein human carotid symptomatic plaque EVs induced sprouting angiogenesis in comparison to their matched marginal zones. Conclusion: Our findings indicate that EVs may drive dynamic changes in plaques through EV-vascular cell communication and effector functions that typify vulnerability to rupture, precipitating symptomatic disease. The discovery of endothelial-directed processes mediated by EVs creates new avenues for novel therapeutics in atherosclerosis.

3.
Angiogenesis ; 27(3): 461-474, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38780883

ABSTRACT

The presence of atherosclerotic plaque vessels is a critical factor in plaque destabilization. This may be attributable to the leaky phenotype of these microvessels, although direct proof for this notion is lacking. In this study, we investigated molecular and cellular patterns of stable and hemorrhaged human plaque to identify novel drivers of intraplaque vessel dysfunction. From transcriptome data of a human atherosclerotic lesion cohort, we reconstructed a co-expression network, identifying a gene module strongly and selectively correlated with both plaque microvascular density and inflammation. Spectrin Beta Non-Erythrocytic 1 (sptbn1) was identified as one of the central hubs of this module (along with zeb1 and dock1) and was selected for further study based on its predominant endothelial expression. Silencing of sptbn1 enhanced leukocyte transmigration and vascular permeability in vitro, characterized by an increased number of focal adhesions and reduced junctional VE-cadherin. In vivo, sptbn1 knockdown in zebrafish impaired the development of the caudal vein plexus. Mechanistically, increased substrate stiffness was associated with sptbn1 downregulation in endothelial cells in vitro and in human vessels. Plaque SPTBN1 mRNA and protein expression were found to correlate with an enhanced presence of intraplaque hemorrhage and future cardiovascular disease (CVD) events during follow-up. In conclusion, we identify SPTBN1 as a central hub gene in a gene program correlating with plaque vascularisation. SPTBN1 was regulated by substrate stiffness in vitro while silencing blocked vascular development in vivo, and compromised barrier function in vitro. Together, SPTBN1 is identified as a new potential regulator of the leaky phenotype of atherosclerotic plaque microvessels.


Subject(s)
Microvessels , Phenotype , Plaque, Atherosclerotic , Spectrin , Zebrafish , Humans , Plaque, Atherosclerotic/pathology , Plaque, Atherosclerotic/genetics , Plaque, Atherosclerotic/metabolism , Zebrafish/genetics , Animals , Microvessels/pathology , Microvessels/metabolism , Spectrin/genetics , Spectrin/metabolism , Transcriptome/genetics , Capillary Permeability/genetics , Human Umbilical Vein Endothelial Cells/metabolism
4.
Article in English | MEDLINE | ID: mdl-38486367

ABSTRACT

BACKGROUND: Risk-based thresholds for arteriovenous (AV) access creation has been proposed to aid vascular access planning. We aimed to assess the clinical impact of implementing the kidney failure risk equation (KFRE) for vascular access referral. METHODS: 16,102 nephrology-referred chronic kidney disease (CKD) patients from the Swedish Renal Registry 2008-2018 were included. The KFRE was calculated repeatedly, and the timing was identified for when the KFRE risk exceeded several pre-defined thresholds and/or the estimated glomerular filtration rate <15 ml/min/1.73m2 (eGFR15). To assess the utility of the KFRE/eGFR thresholds, cumulative incidence curves of kidney replacement therapy (KRT) or death, and decision-curve analyses were computed at 6, 12 months, and 2 years. The potential impact of using the different thresholds was illustrated by an example from the Swedish access registry. RESULTS: The 12-month specificity for KRT initiation was highest for KFRE>50% 94.5 (95% Confidence interval [CI] 94.3-94.7), followed by KFRE>40% 90.0 (95% CI 89.7-90.3), while sensitivity was highest for KFRE>30% 79.3 (95% CI 78.2-80.3) and eGFR<15 ml/min/1.73m2 81.2 (95% CI 80.2-82.2). The 2-year positive predictive value was 71.5 (95% CI 70.2-72.8), 61.7 (95% CI 60.4-63.0) and 47.2 (95% CI 46.1-48.3) for KFRE>50%, KFRE>40%, and eGFR<15 respectively. Decision curve analyses suggested the largest net benefit for KFRE>40% over two years and KFRE>50% over 12 months when it is important to avoid the harm of possibly unnecessary surgery. In Sweden, 54% of nephrology-referred patients started hemodialysis in a central venous catheter (CVC) of which only 5% had AV access surgery >6 months before initiation. 60% of the CVC patients exceeded KFRE>40% a median of 0.8 years (interquartile range 0.4-1.5) before KRT initiation. CONCLUSIONS: The utility of using KFRE>40% and KFRE>50% is higher compared to the more traditionally used eGFR threshold <15 ml/min/1.73m2 for vascular access planning.

6.
Ann Biomed Eng ; 52(5): 1347-1358, 2024 May.
Article in English | MEDLINE | ID: mdl-38349443

ABSTRACT

The identification of carotid atherosclerotic lesion at risk for plaque rupture, eventually resulting in cerebral embolism and stroke, is of paramount clinical importance. High stress in the fibrous plaque cap has been proposed as risk factor. However, among others, residual strains influence said stress predictions, but quantitative and qualitative implications of residual strains in this context are not well explored. We therefore propose a multiplicative kinematics-based Growth and Remodeling (G&R) framework to predict residual strains from homogenizing tissue stress and then investigate its implication on plaque stress. Carotid vessel morphology of four patients was reconstructed from clinical Computed Tomography-Angiography (CT-A) images and equipped with heterogeneous tissue constitutive properties assigned through a histology-based artificial intelligence image segmentation tool. As compared to a purely elastic analysis and depending on patient-specific morphology and tissue distributions, the incorporation of residual strains reduced the maximum wall stress by up to 30 % and resulted in a fundamentally different distribution of stress across the atherosclerotic wall. Regardless residual strains homogenized tissue stresses, the fibrous plaque cap may persistently be exposed to spots of high stress. In conclusion, the incorporation of residual strains in biomechanical studies of atherosclerotic carotids may be important for a reliable assessment of fibrous plaque cap stress.


Subject(s)
Atherosclerosis , Plaque, Atherosclerotic , Stroke , Humans , Artificial Intelligence , Atherosclerosis/diagnostic imaging , Atherosclerosis/pathology , Carotid Arteries/diagnostic imaging , Carotid Arteries/pathology , Plaque, Atherosclerotic/diagnostic imaging , Plaque, Atherosclerotic/pathology , Stroke/pathology , Fibrosis , Stress, Mechanical
9.
JVS Vasc Sci ; 4: 100118, 2023.
Article in English | MEDLINE | ID: mdl-37810738

ABSTRACT

Objective: Characterization of the atherosclerotic process fully relies on histological evaluation and staging through a consensus grading system. So far, a head-to-head comparison of atherosclerotic process in experimental models and tissue resources commonly applied in atherosclerosis research with the actual human atherosclerotic process is missing. Material and Methods: Aspects of the atherosclerotic process present in established murine atherosclerosis models and human carotid endarterectomy specimen were systematically graded using the modified American Heart Association histological classification (Virmani classification). Aspects were aligned with the atherosclerotic process observed in human coronary artery and aortic atherosclerosis reference tissues that were available through biobanks based on human tissue/organ donor material. Results: Apart from absent intraplaque hemorrhages in aortic lesions, the histological characteristics of the different stages of human coronary and aortic atherosclerosis are similar. Carotid endarterectomy samples all represent end-stage "fibrous calcified plaque" lesions, although secondary, progressive, and vulnerable lesions with gross morphologies similar to coronary/aortic lesions occasionally present along the primary lesions. For the murine lesions, clear histological parallels were observed for the intermediate lesion types ("pathological intimal thickening," and "early fibroatheroma"). However, none of the murine lesions studied progressed to an equivalent of late fibroatheroma or beyond. Notable contrasts were observed for disease initiation: whereas disease initiation in humans is characterized by a mesenchymal cell influx in the intima, the earliest murine lesions are exclusively intimal, with subendothelial accumulation foam cells. A mesenchymal (and medial) response are absent. In fact, it is concluded that the stage of "adaptive intimal thickening" is absent in all mouse models included in this study. Conclusions: The Virmani classification for coronary atherosclerosis can be applied for systematically grading experimental and clinical atherosclerosis. Application of this histological grading tool shows clear parallels for intermediate human and murine atherosclerotic lesions. However, clear contrasts are observed for disease initiation, and late stage atherosclerotic lesions. Carotid endarterectomy all represent end-stage fibrous calcified plaque lesions, although secondary earlier lesions may present in a subset of samples.

10.
Biomolecules ; 13(6)2023 05 24.
Article in English | MEDLINE | ID: mdl-37371462

ABSTRACT

BACKGROUND: Intraplaque hemorrhage (IPH) is a hallmark of atherosclerotic plaque instability. Biliverdin reductase B (BLVRB) is enriched in plasma and plaques from patients with symptomatic carotid atherosclerosis and functionally associated with IPH. OBJECTIVE: We explored the biomarker potential of plasma BLVRB through (1) its correlation with IPH in carotid plaques assessed by magnetic resonance imaging (MRI), and with recurrent ischemic stroke, and (2) its use for monitoring pharmacotherapy targeting IPH in a preclinical setting. METHODS: Plasma BLVRB levels were measured in patients with symptomatic carotid atherosclerosis from the PARISK study (n = 177, 5 year follow-up) with and without IPH as indicated by MRI. Plasma BLVRB levels were also measured in a mouse vein graft model of IPH at baseline and following antiangiogenic therapy targeting vascular endothelial growth factor receptor 2 (VEGFR-2). RESULTS: Plasma BLVRB levels were significantly higher in patients with IPH (737.32 ± 693.21 vs. 520.94 ± 499.43 mean fluorescent intensity (MFI), p = 0.033), but had no association with baseline clinical and biological parameters. Plasma BLVRB levels were also significantly higher in patients who developed recurrent ischemic stroke (1099.34 ± 928.49 vs. 582.07 ± 545.34 MFI, HR = 1.600, CI [1.092-2.344]; p = 0.016). Plasma BLVRB levels were significantly reduced following prevention of IPH by anti-VEGFR-2 therapy in mouse vein grafts (1189 ± 258.73 vs. 1752 ± 366.84 MFI; p = 0.004). CONCLUSIONS: Plasma BLVRB was associated with IPH and increased risk of recurrent ischemic stroke in patients with symptomatic low- to moderate-grade carotid stenosis, indicating the capacity to monitor the efficacy of IPH-preventive pharmacotherapy in an animal model. Together, these results suggest the utility of plasma BLVRB as a biomarker for atherosclerotic plaque instability.


Subject(s)
Carotid Artery Diseases , Ischemic Stroke , Plaque, Atherosclerotic , Animals , Humans , Mice , Biomarkers/blood , Carotid Artery Diseases/blood , Carotid Artery Diseases/complications , Hemorrhage/blood , Hemorrhage/diagnostic imaging , Hemorrhage/etiology , Ischemic Stroke/blood , Ischemic Stroke/etiology , Plaque, Atherosclerotic/blood , Plaque, Atherosclerotic/diagnostic imaging , Plaque, Atherosclerotic/pathology , Vascular Endothelial Growth Factor A/antagonists & inhibitors
11.
Circ Res ; 132(9): 1144-1161, 2023 04 28.
Article in English | MEDLINE | ID: mdl-37017084

ABSTRACT

BACKGROUND: Genome-wide association studies have identified hundreds of loci associated with common vascular diseases, such as coronary artery disease, myocardial infarction, and hypertension. However, the lack of mechanistic insights for many GWAS loci limits their translation into the clinic. Among these loci with unknown functions is UFL1-four-and-a-half LIM (LIN-11, Isl-1, MEC-3) domain 5 (FHL5; chr6q16.1), which reached genome-wide significance in a recent coronary artery disease/ myocardial infarction GWAS meta-analysis. UFL1-FHL5 is also associated with several vascular diseases, consistent with the widespread pleiotropy observed for GWAS loci. METHODS: We apply a multimodal approach leveraging statistical fine-mapping, epigenomic profiling, and ex vivo analysis of human coronary artery tissues to implicate FHL5 as the top candidate causal gene. We unravel the molecular mechanisms of the cross-phenotype genetic associations through in vitro functional analyses and epigenomic profiling experiments in coronary artery smooth muscle cells. RESULTS: We prioritized FHL5 as the top candidate causal gene at the UFL1-FHL5 locus through expression quantitative trait locus colocalization methods. FHL5 gene expression was enriched in the smooth muscle cells and pericyte population in human artery tissues with coexpression network analyses supporting a functional role in regulating smooth muscle cell contraction. Unexpectedly, under procalcifying conditions, FHL5 overexpression promoted vascular calcification and dysregulated processes related to extracellular matrix organization and calcium handling. Lastly, by mapping FHL5 binding sites and inferring FHL5 target gene function using artery tissue gene regulatory network analyses, we highlight regulatory interactions between FHL5 and downstream coronary artery disease/myocardial infarction loci, such as FOXL1 and FN1 that have roles in vascular remodeling. CONCLUSIONS: Taken together, these studies provide mechanistic insights into the pleiotropic genetic associations of UFL1-FHL5. We show that FHL5 mediates vascular disease risk through transcriptional regulation of downstream vascular remodeling gene programs. These transacting mechanisms may explain a portion of the heritable risk for complex vascular diseases.


Subject(s)
Coronary Artery Disease , Hypertension , Myocardial Infarction , Humans , Coronary Artery Disease/genetics , Coronary Artery Disease/metabolism , Genome-Wide Association Study , Vascular Remodeling , Myocardial Infarction/metabolism , Hypertension/metabolism , Myocytes, Smooth Muscle/metabolism , Polymorphism, Single Nucleotide , Genetic Predisposition to Disease , Transcription Factors/metabolism , LIM Domain Proteins/genetics , LIM Domain Proteins/metabolism
13.
Cardiovasc Res ; 119(7): 1524-1536, 2023 07 04.
Article in English | MEDLINE | ID: mdl-36866436

ABSTRACT

AIMS: Recent studies have revealed a close connection between cellular metabolism and the chronic inflammatory process of atherosclerosis. While the link between systemic metabolism and atherosclerosis is well established, the implications of altered metabolism in the artery wall are less understood. Pyruvate dehydrogenase kinase (PDK)-dependent inhibition of pyruvate dehydrogenase (PDH) has been identified as a major metabolic step regulating inflammation. Whether the PDK/PDH axis plays a role in vascular inflammation and atherosclerotic cardiovascular disease remains unclear. METHODS AND RESULTS: Gene profiling of human atherosclerotic plaques revealed a strong correlation between PDK1 and PDK4 transcript levels and the expression of pro-inflammatory and destabilizing genes. Remarkably, the PDK1 and PDK4 expression correlated with a more vulnerable plaque phenotype, and PDK1 expression was found to predict future major adverse cardiovascular events. Using the small-molecule PDK inhibitor dichloroacetate (DCA) that restores arterial PDH activity, we demonstrated that the PDK/PDH axis is a major immunometabolic pathway, regulating immune cell polarization, plaque development, and fibrous cap formation in Apoe-/- mice. Surprisingly, we discovered that DCA regulates succinate release and mitigates its GPR91-dependent signals promoting NLRP3 inflammasome activation and IL-1ß secretion by macrophages in the plaque. CONCLUSIONS: We have demonstrated for the first time that the PDK/PDH axis is associated with vascular inflammation in humans and particularly that the PDK1 isozyme is associated with more severe disease and could predict secondary cardiovascular events. Moreover, we demonstrate that targeting the PDK/PDH axis with DCA skews the immune system, inhibits vascular inflammation and atherogenesis, and promotes plaque stability features in Apoe-/- mice. These results point toward a promising treatment to combat atherosclerosis.


Subject(s)
Atherosclerosis , Cardiovascular Diseases , Pyruvate Dehydrogenase Acetyl-Transferring Kinase , Animals , Humans , Mice , Atherosclerosis/genetics , Heart Disease Risk Factors , Inflammation/genetics , Mice, Knockout, ApoE , Risk Factors
14.
Eur J Vasc Endovasc Surg ; 65(6): 778-786, 2023 06.
Article in English | MEDLINE | ID: mdl-36871924

ABSTRACT

OBJECTIVE: Carotid endarterectomy (CEA) is an effective surgical method for stroke prevention in selected patients with carotid stenosis. Few contemporary studies report on the long term mortality rate in CEA treated patients, despite continuous changes in medication, diagnostics, and patient selection. Here, the long term mortality rate is described in a well characterised cohort of asymptomatic and symptomatic CEA patients, sex differences evaluated, and mortality ratio compared with the general population. METHODS: This was a two centre, non-randomised, observational study evaluating all cause, long term mortality in CEA patients from Stockholm, Sweden between 1998 and 2017. Death and comorbidities were extracted from national registries and medical records. Cox regression was adapted to analyse associations between clinical characteristics and outcome. Sex differences and standardised mortality ratio (SMR, age and sex matched) were studied. RESULTS: A total of 1 033 patients were followed for 6.6 ± 4.8 years. Of those, 349 patients died during follow up where the overall mortality rate was similar in asymptomatic and symptomatic patients (34.2% vs. 33.7%, p = .89). Symptomatic disease did not influence the mortality risk (adjusted HR 1.14, 95% CI 0.81 - 1.62). Women had lower crude mortality rate than men in the first 10 years (20.8% vs. 27.6%, p = .019). In women, cardiac disease was associated with increased mortality (adjusted HR 3.55, 95% CI 2.18 - 5.79), while in men, lipid lowering medication was protective (adjusted HR 0.61, 95% CI 0.39 - 0.96). Within the first five years after surgery, SMR was increased for all patients (men 1.50, 95% CI 1.21 - 1.86; women 2.41, 95% CI 1.74 - 3.35), as well as in patients < 80 years (SMR 1.46, 95% CI 1.23 - 1.73). CONCLUSION: Symptomatic and asymptomatic carotid patients have similar long term mortality rates after CEA, but men had worse outcome than women. Sex, age, and time after surgery were shown to influence SMR. These results highlight the need for targeted secondary prevention, to alter the long term adverse effects in CEA patients.


Subject(s)
Carotid Stenosis , Endarterectomy, Carotid , Stroke , Humans , Female , Male , Endarterectomy, Carotid/adverse effects , Risk Factors , Treatment Outcome , Carotid Stenosis/diagnostic imaging , Carotid Stenosis/surgery , Carotid Arteries , Stroke/epidemiology , Retrospective Studies , Risk Assessment , Stents
15.
Atherosclerosis ; 371: 41-53, 2023 04.
Article in English | MEDLINE | ID: mdl-36996622

ABSTRACT

BACKGROUND AND AIMS: Laminins are essential components of the endothelial basement membrane, which predominantly contains LN421 and LN521 isoforms. Regulation of laminin expression under pathophysiological conditions is largely unknown. In this study, we aimed to investigate the role of IL-6 in regulating endothelial laminin profile and characterize the impact of altered laminin composition on the phenotype, inflammatory response, and function of endothelial cells (ECs). METHODS: HUVECs and HAECs were used for in vitro experiments. Trans-well migration experiments were performed using leukocytes isolated from peripheral blood of healthy donors. The BiKE cohort was used to assess expression of laminins in atherosclerotic plaques and healthy vessels. Gene and protein expression was analyzed using Microarray/qPCR and proximity extension assay, ELISA, immunostaining or immunoblotting techniques, respectively. RESULTS: Stimulation of ECs with IL-6+sIL-6R, but not IL-6 alone, reduces expression of laminin α4 (LAMA4) and increases laminin α5 (LAMA5) expression at the mRNA and protein levels. In addition, IL-6+sIL-6R stimulation of ECs differentially regulates the release of several proteins including CXCL8 and CXCL10, which collectively were predicted to inhibit granulocyte transmigration. Experimentally, we demonstrated that granulocyte migration is inhibited across ECs pre-treated with IL-6+sIL-6R. In addition, granulocyte migration across ECs cultured on LN521 was significantly lower compared to LN421. In human atherosclerotic plaques, expression of endothelial LAMA4 and LAMA5 is significantly lower compared to control vessels. Moreover, LAMA5-to-LAMA4 expression ratio was negatively correlated with granulocytic cell markers (CD177 and myeloperoxidase (MPO)) and positively correlated with T-lymphocyte marker CD3. CONCLUSIONS: We showed that expression of endothelial laminin alpha chains is regulated by IL-6 trans-signaling and contributes to inhibition of trans-endothelial migration of granulocytic cells. Further, expression of laminin alpha chains is altered in human atherosclerotic plaques and is related to intra-plaque abundance of leukocyte subpopulations.


Subject(s)
Laminin , Plaque, Atherosclerotic , Humans , Laminin/genetics , Laminin/metabolism , Interleukin-6/metabolism , Endothelial Cells/metabolism , Plaque, Atherosclerotic/metabolism , Granulocytes/metabolism
16.
Comput Biol Med ; 152: 106364, 2023 01.
Article in English | MEDLINE | ID: mdl-36525832

ABSTRACT

OBJECTIVE: Guidance for preventing myocardial infarction and ischemic stroke by tailoring treatment for individual patients with atherosclerosis is an unmet need. Such development may be possible with computational modeling. Given the multifactorial biology of atherosclerosis, modeling must be based on complete biological networks that capture protein-protein interactions estimated to drive disease progression. Here, we aimed to develop a clinically relevant scale model of atherosclerosis, calibrate it with individual patient data, and use it to simulate optimized pharmacotherapy for individual patients. APPROACH AND RESULTS: The study used a uniquely constituted plaque proteomic dataset to create a comprehensive systems biology disease model for simulating individualized responses to pharmacotherapy. Plaque tissue was collected from 18 patients with 6735 proteins at two locations per patient. 113 pathways were identified and included in the systems biology model of endothelial cells, vascular smooth muscle cells, macrophages, lymphocytes, and the integrated intima, altogether spanning 4411 proteins, demonstrating a range of 39-96% plaque instability. After calibrating the systems biology models for individual patients, we simulated intensive lipid-lowering, anti-inflammatory, and anti-diabetic drugs. We also simulated a combination therapy. Drug response was evaluated as the degree of change in plaque stability, where an improvement was defined as a reduction of plaque instability. In patients with initially unstable lesions, simulated responses varied from high (20%, on combination therapy) to marginal improvement, whereas patients with initially stable plaques showed generally less improvement. CONCLUSION: In this pilot study, proteomics-based system biology modeling was shown to simulate drug response based on atherosclerotic plaque instability with a power of 90%, providing a potential strategy for improved personalized management of patients with cardiovascular disease.


Subject(s)
Atherosclerosis , Cardiovascular Diseases , Plaque, Atherosclerotic , Humans , Cardiovascular Diseases/drug therapy , Proteomics , Precision Medicine , Endothelial Cells/metabolism , Endothelial Cells/pathology , Calibration , Pilot Projects , Atherosclerosis/drug therapy , Computer Simulation
17.
Front Pharmacol ; 13: 988561, 2022.
Article in English | MEDLINE | ID: mdl-36188622

ABSTRACT

Proprotein convertase subtilisin/kexins (PCSKs) constitute a family of nine related proteases: PCSK1-7, MBTPS1, and PCSK9. Apart from PCSK9, little is known about PCSKs in cardiovascular disease. Here, we aimed to investigate the expression landscape and druggability potential of the entire PCSK family for CVD. We applied an integrative approach, combining genetic, transcriptomic and proteomic data from three vascular biobanks comprising carotid atherosclerosis, thoracic and abdominal aneurysms, with patient clinical parameters and immunohistochemistry of vascular biopsies. Apart from PCSK4, all PCSK family members lie in genetic regions containing variants associated with human cardiovascular traits. Transcriptomic analyses revealed that FURIN, PCSK5, MBTPS1 were downregulated, while PCSK6/7 were upregulated in plaques vs. control arteries. In abdominal aneurysms, FURIN, PCSK5, PCSK7, MBTPS1 were downregulated, while PCSK6 was enriched in diseased media. In thoracic aneurysms, only FURIN was significantly upregulated. Network analyses of the upstream and downstream pathways related to PCSKs were performed on the omics data from vascular biopsies, revealing mechanistic relationships between this protein family and disease. Cell type correlation analyses and immunohistochemistry showed that PCSK transcripts and protein levels parallel each other, except for PCSK9 where transcript was not detected, while protein was abundant in vascular biopsies. Correlations to clinical parameters revealed a positive association between FURIN plaque levels and serum LDL, while PCSK6 was negatively associated with Hb. PCSK5/6/7 were all positively associated with adverse cardiovascular events. Our results show that PCSK6 is abundant in plaques and abdominal aneurysms, while FURIN upregulation is characteristic for thoracic aneurysms. PCSK9 protein, but not the transcript, was present in vascular lesions, suggesting its accumulation from circulation. Integrating our results lead to the development of a novel 'molecular' 5D framework. Here, we conducted the first integrative study of the proprotein convertase family in this context. Our results using this translational pipeline, revealed primarily PCSK6, followed by PCSK5, PCSK7 and FURIN, as proprotein convertases with the highest novel therapeutic potential.

18.
Cells ; 11(20)2022 10 18.
Article in English | MEDLINE | ID: mdl-36291144

ABSTRACT

Intimal calcification and vascular stiffening are predominant features of end-stage atherosclerosis. However, their role in atherosclerotic plaque instability and how the extent and spatial distribution of calcification influence plaque biology remain unclear. We recently showed that extensive macro calcification can be a stabilizing feature of late-stage human lesions, associated with a reacquisition of more differentiated properties of plaque smooth muscle cells (SMCs) and extracellular matrix (ECM) remodeling. Here, we hypothesized that biomechanical forces related to macro-calcification within plaques influence SMC phenotype and contribute to plaque stabilization. We generated a finite element modeling (FEM) pipeline to assess plaque tissue stretch based on image analysis of preoperative computed tomography angiography (CTA) of carotid atherosclerotic plaques to visualize calcification and soft tissues (lipids and extracellular matrix) within the lesions. Biomechanical stretch was significantly reduced in tissues in close proximity to macro calcification, while increased levels were observed within distant soft tissues. Applying this data to an in vitro stretch model on primary vascular SMCs revealed upregulation of typical markers for differentiated SMCs and contractility under low stretch conditions but also impeded SMC alignment. In contrast, high stretch conditions in combination with calcifying conditions induced SMC apoptosis. Our findings suggest that the load bearing capacities of macro calcifications influence SMC differentiation and survival and contribute to atherosclerotic plaque stabilization.


Subject(s)
Calcinosis , Carotid Artery Diseases , Plaque, Atherosclerotic , Humans , Plaque, Atherosclerotic/pathology , Myocytes, Smooth Muscle/pathology , Carotid Artery Diseases/diagnostic imaging , Calcinosis/pathology , Phenotype , Lipids
19.
J Mech Behav Biomed Mater ; 134: 105403, 2022 10.
Article in English | MEDLINE | ID: mdl-36049368

ABSTRACT

BACKGROUND: Rupture of unstable atherosclerotic plaques with a large lipid-rich necrotic core and a thin fibrous cap cause myocardial infarction and stroke. Yet it has not been possible to assess this for individual patients. Clinical guidelines still rely on use of luminal narrowing, a poor indicator but one that persists for lack of effective means to do better. We present a case study demonstrating the assessment of biomechanical indices pertaining to plaque rupture risk non-invasively for individual patients enabled by histologically validated tissue characterization. METHODS: Routinely acquired clinical images of plaques were analyzed to characterize vascular wall tissues using software validated by histology (ElucidVivo, Elucid Bioimaging Inc.). Based on the tissue distribution, wall stress and strain were then calculated at spatial locations with varied fibrous cap thicknesses at diastolic, mean and systolic blood pressures. RESULTS: The von Mises stress of 152 [131, 172] kPa and the equivalent strain of 0.10 [0.08, 0.12] were calculated where the fibrous cap thickness was smallest (560 µm) (95% CI in brackets). The stress at this location was at a level predictive of plaque failure. Stress and strain at locations with larger cap thicknesses were calculated to be lower, demonstrating a clinically relevant range of risk levels. CONCLUSION: Patient specific tissue characterization can identify distributions of stress and strain in a clinically relevant range. This capability may be used to identify high-risk lesions and personalize treatment decisions for individual patients with cardiovascular disease and improve prevention of myocardial infarction and stroke.


Subject(s)
Myocardial Infarction , Plaque, Atherosclerotic , Stroke , Computed Tomography Angiography , Fibrosis , Humans , Myocardial Infarction/diagnostic imaging , Plaque, Atherosclerotic/diagnostic imaging , Plaque, Atherosclerotic/pathology , Stroke/diagnostic imaging
20.
iScience ; 25(5): 104219, 2022 May 20.
Article in English | MEDLINE | ID: mdl-35494231

ABSTRACT

Unstable carotid stenosis is an important cause of ischemic stroke, yet the basis of disease pathophysiology remains largely unknown. We hypothesized that integrated analyses of symptomatic carotid stenosis patients at increased stroke risk stratified by clinical scores, CAR and ABCD2, with transcriptomic and clinical data could improve identification of molecular pathways and targets for instability. We show that high CAR score reflects plaque instability processes related to intra-plaque hemorrhage, angiogenesis, inflammation, and foam cell differentiation, whereas ABCD2 associates with neutrophil-mediated immunity, foam cell differentiation, cholesterol transport, and coagulation. Repressed processes in plaques from high-risk patients were ossification, chondrocyte differentiation, SMC migration, and ECM organization. ABCB5 gene was found as the top upregulated in high-risk patient's plaques, localized to macrophages in areas with neovascularization and intra-plaque hemorrhage. The link between ABCB5 and intra-plaque hemorrhage suggests its key role for plaque instability that warrants further exploration.

SELECTION OF CITATIONS
SEARCH DETAIL