Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Glob Chang Biol ; 27(10): 1998-2010, 2021 May.
Article in English | MEDLINE | ID: mdl-33604995

ABSTRACT

As soils under permanent pasture and grasslands have large topsoil carbon (C) stocks, the scope to sequester additional C may be limited. However, because C in pasture/grassland soils declines with depth, there may be potential to sequester additional C in the subsoil. Data from 247 continuous pasture sites in New Zealand (representing five major soil Orders and ~80% of the grassland area) showed that, on average, the 0.15-0.30 m layer contained 25-34 t ha-1 less C than the top 0.15 m. High-production grazed pastures require periodic renewal (re-seeding) every 7-14 years to maintain productivity. Our objective was to assess whether a one-time pasture renewal, involving full inversion tillage (FIT) to a depth of 0.30 m, has potential to increase C storage by burying C-rich topsoil and bringing low-C subsoil to the surface where C inputs from pasture production are greatest. Data from the 247 pasture sites were used to model changes in C stocks following FIT pasture renewal by predicting (1) the C accumulation in the new 0-0.15 m layer and (2) the decomposition of buried-C in the new 0.15-0.30 m layer. In the 20 years following FIT pasture renewal, soil C was predicted to increase by an average of 7.3-10.3 (Sedimentary soils) and 9.6-12.7 t C ha-1 (Allophanic soils), depending on the assumptions applied. Adoption of FIT for pasture renewal across all suitable soils (2.0-2.6 M ha) in New Zealand was predicted to sequester ~20-36 Mt C, sufficient to offset 9.6-17.5% of the country's cumulative greenhouse gas emissions from agriculture over 20 years at the current rate of emissions. Given that grasslands account for ~70% of global agricultural land, FIT renewal of pastures or grassland could offer a significant opportunity to sequester soil C and offset greenhouse gas emissions.


Subject(s)
Carbon , Soil , Agriculture , Carbon/analysis , Carbon Sequestration , New Zealand
2.
PLoS One ; 11(6): e0157017, 2016.
Article in English | MEDLINE | ID: mdl-27284995

ABSTRACT

This study aimed to develop and test an unbiased and rapid methodology to estimate the length of external arbuscular mycorrhizal fungal (AMF) hyphae in soil. The traditional visual gridline intersection (VGI) method, which consists in a direct visual examination of the intersections of hyphae with gridlines on a microscope eyepiece after aqueous extraction, membrane-filtration, and staining (e.g., with trypan blue), was refined. For this, (i) images of the stained hyphae were taken by using a digital photomicrography technique to avoid the use of the microscope and the method was referred to as "digital gridline intersection" (DGI) method; and (ii), the images taken in (i) were processed and the hyphal length was measured by using ImageJ software, referred to as the "photomicrography-ImageJ processing" (PIP) method. The DGI and PIP methods were tested using known grade lengths of possum fur. Then they were applied to measure the hyphal lengths in soils with contrasting phosphorus (P) fertility status. Linear regressions were obtained between the known lengths (Lknown) of possum fur and the values determined by using either the DGI (LDGI) (LDGI = 0.37 + 0.97 × Lknown, r2 = 0.86) or PIP (LPIP) methods (LPIP = 0.33 + 1.01 × Lknown, r2 = 0.98). There were no significant (P > 0.05) differences between the LDGI and LPIP values. While both methods provided accurate estimation (slope of regression being 1.0), the PIP method was more precise, as reflected by a higher value of r2 and lower coefficients of variation. The average hyphal lengths (6.5-19.4 m g-1) obtained by the use of these methods were in the range of those typically reported in the literature (3-30 m g-1). Roots growing in P-deficient soil developed 2.5 times as many hyphae as roots growing in P-rich soil (17.4 vs 7.2 m g-1). These tests confirmed that the use of digital photomicrography in conjunction with either the grid-line intersection principle or image processing is a suitable method for the measurement of AMF hyphal lengths in soils for comparative investigations.


Subject(s)
Hyphae/growth & development , Image Processing, Computer-Assisted/methods , Mycorrhizae/growth & development , Photomicrography/methods , Animals , Calibration , Hair/microbiology , Image Processing, Computer-Assisted/standards , Photomicrography/standards , Plant Roots/microbiology , Signal Processing, Computer-Assisted , Soil , Soil Microbiology/standards , Statistics as Topic/methods , Statistics as Topic/standards , Trichosurus/microbiology
3.
Rev Environ Contam Toxicol ; 192: 29-66, 2008.
Article in English | MEDLINE | ID: mdl-18020303

ABSTRACT

Fertilizers are indispensable for ensuring sustainability of agricultural production, thereby achieving food and fiber security. Nitrogen, sulfur, and potassium fertilizers are relatively free of impurities, but phosphorus (P) fertilizers, the main fertilizer input for the economic production of legume-based pastures, contain several contaminants, of which F and Cd are considered to be of most concern because they have potentially harmful effects on soil quality, livestock health, and food safety. Incidences of fluorosis in grazing livestock, and accumulation of Cd in the edible offal products of livestock, above the maximum permissible concentration set by food authorities have been reported in many countries. The majority of Cd and F applied to pastures in many countries continues to accumulate in the biologically active topsoil due to strong adsorption to soil constituents. However, the rate of Cd accumulation in the last decade has slowed as a result of selective use of low-Cd fertilizers. Cd and F adsorption in soils increase with increased contents of iron and aluminium oxides, layer silicates and allophane in soils, and increased soil pH. Cadmium adsorption also increases with increased Mn oxides and organic matter in soil. However, some Cd will be released during decomposition of plant and animal remains and organic matter. In most pastoral soils the majority of Cd and F added in fertilizers remains in the topsoil and little moves below 20-30 cm, and therefore these are unlikely to contaminate groundwater. However, F may pose a risk to shallow groundwater in very acidic low-P-fixing soils, and Cd may pose a risk in very acidic soils containing low organic matter and clay contents, or in soils with high chloride concentrations. Research is required both to test whether groundwater beneath farms with long histories of P fertilizer use is contaminated by these elements and also to examine their mechanisms of movement. Cd intake by grazing livestock occurs mostly by ingestion of pasture, and therefore measures to decrease plant availability of Cd in soils (e.g., maintaining high organic matter, reducing soil acidity and salinity, alleviating zinc deficiency, reducing weed) can reduce Cd accumulation in livestock. F intake by grazing livestock is mostly by soil ingestion; therefore, reducing soil ingestion by maintaining good pasture cover especially during winter periods can reduce F accumulation in livestock. In grazing livestock, Cd accumulates in kidney and liver, whereas F accumulates mainly in bones. Very little research has been carried out to study the effects of sustained but low levels of Cd and F additions on soil microbial activity, especially on the economically important N-fixers in symbiosis with pasture legumes and mycorrhizae. This subject also needs to be researched. The impact of F accumulation in bones of animals as influenced by the alternative low and high soil F intake between seasons and the effect of increasing age of animals needs further study to more accurately determine the potential risk of fluorosis and elucidate potential solutions to minimize F accumulation in bones and teeth of aged breeding stock. Computer-based models are required to identify farming systems that present a high risk of Cd concentrations in edible offal exceeding the MPC and livestock at risk of chronic fluorosis. A decision support model of this kind may be useful in developing management strategies capable of reducing Cd and F accumulation in animals. Preliminary empirical models have been developed for Cd (Loganathan et al. 1999) and F (Bretherton et al. 2002) accumulation in sheep grazing New Zealand pastures. Further development of these models is required for their wider applicability.


Subject(s)
Animals, Domestic , Cadmium , Fertilizers , Fluorine , Plants/drug effects , Soil Pollutants , Agriculture , Animal Feed , Animals , Cadmium/analysis , Cadmium/pharmacokinetics , Fluorine/analysis , Fluorine/pharmacokinetics , Hydrogen-Ion Concentration , Models, Biological , Plant Development , Plants/chemistry , Risk Assessment , Salinity , Soil Pollutants/analysis , Soil Pollutants/pharmacokinetics , Tissue Distribution , Water Supply
SELECTION OF CITATIONS
SEARCH DETAIL