Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 85
Filter
1.
Ecohealth ; 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38441851

ABSTRACT

Witnessing degradation and loss to one's home environment can cause the negative emotional experience of solastalgia. We review the psychometric properties of the 9-item Solastalgia subscale from the Environmental Distress Scale (Higginbotham et al. (EcoHealth 3:245-254, 2006)). Using data collected from three large, independent, adult samples (N = 4229), who were surveyed soon after the 2019/20 Australian bushfires, factor analyses confirmed the scale's unidimensionality, while analyses derived from Item Response Theory highlighted the poor psychometric performance and redundant content of specific items. Consequently, we recommend a short-form scale consisting of five items. This Brief Solastalgia Scale (BSS) yielded excellent model fit and internal consistency in both the initial and cross-validation samples. The BSS and its parent version provide very similar patterns of associations with demographic, health, life satisfaction, climate emotion, and nature connectedness variables. Finally, multi-group confirmatory factor analysis demonstrated comparable construct architecture (i.e. configural, metric, and scalar invariance) across validation samples, gender categories, and age. As individuals and communities increasingly confront and cope with climate change and its consequences, understanding related emotional impacts is crucial. The BSS promises to aid researchers, decision makers, and practitioners to understand and support those affected by negative environmental change.

2.
Sci Adv ; 10(11): eadd9342, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38478609

ABSTRACT

Tumors represent ecosystems where subclones compete during tumor growth. While extensively investigated, a comprehensive picture of the interplay of clonal lineages during dissemination is still lacking. Using patient-derived pancreatic cancer cells, we created orthotopically implanted clonal replica tumors to trace clonal dynamics of unperturbed tumor expansion and dissemination. This model revealed the multifaceted nature of tumor growth, with rapid changes in clonal fitness leading to continuous reshuffling of tumor architecture and alternating clonal dominance as a distinct feature of cancer growth. Regarding dissemination, a large fraction of tumor lineages could be found at secondary sites each having distinctive organ growth patterns as well as numerous undescribed behaviors such as abortive colonization. Paired analysis of primary and secondary sites revealed fitness as major contributor to dissemination. From the analysis of pro- and nonmetastatic isogenic subclones, we identified a transcriptomic signature able to identify metastatic cells in human tumors and predict patients' survival.


Subject(s)
Ecosystem , Pancreatic Neoplasms , Humans , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Gene Expression Profiling , Transcriptome
3.
Clin Cancer Res ; 30(10): 2121-2139, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38416404

ABSTRACT

PURPOSE: Mutations in the ATM gene are common in multiple cancers, but clinical studies of therapies targeting ATM-aberrant cancers have yielded mixed results. Refinement of ATM loss of function (LOF) as a predictive biomarker of response is urgently needed. EXPERIMENTAL DESIGN: We present the first disclosure and preclinical development of a novel, selective ATR inhibitor, ART0380, and test its antitumor activity in multiple preclinical cancer models. To refine ATM LOF as a predictive biomarker, we performed a comprehensive pan-cancer analysis of ATM variants in patient tumors and then assessed the ATM variant-to-protein relationship. Finally, we assessed a novel ATM LOF biomarker approach in retrospective clinical data sets of patients treated with platinum-based chemotherapy or ATR inhibition. RESULTS: ART0380 had potent, selective antitumor activity in a range of preclinical cancer models with differing degrees of ATM LOF. Pan-cancer analysis identified 10,609 ATM variants in 8,587 patient tumors. Cancer lineage-specific differences were seen in the prevalence of deleterious (Tier 1) versus unknown/benign (Tier 2) variants, selective pressure for loss of heterozygosity, and concordance between a deleterious variant and ATM loss of protein (LOP). A novel ATM LOF biomarker approach that accounts for variant classification, relationship to ATM LOP, and tissue-specific penetrance significantly enriched for patients who benefited from platinum-based chemotherapy or ATR inhibition. CONCLUSIONS: These data help to better define ATM LOF across tumor types in order to optimize patient selection and improve molecularly targeted therapeutic approaches for patients with ATM LOF cancers.


Subject(s)
Ataxia Telangiectasia Mutated Proteins , Neoplasms , Humans , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/antagonists & inhibitors , Animals , Neoplasms/genetics , Neoplasms/drug therapy , Neoplasms/pathology , Mice , Loss of Function Mutation , Cell Line, Tumor , Biomarkers, Tumor/genetics , Xenograft Model Antitumor Assays , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Organ Specificity/genetics
4.
Aust N Z J Psychiatry ; 58(1): 58-69, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37264605

ABSTRACT

AIMS: We assessed the mental health effects of Australia's 2019-2020 bushfires 12-18 months later, predicting psychological distress and positive psychological outcomes from bushfire exposure and a range of demographic variables, and seeking insights to enhance disaster preparedness and resilience planning for different profiles of people. METHODS: We surveyed 3083 bushfire-affected and non-affected Australian residents about their experiences of bushfire, COVID-19, psychological distress (depression, anxiety, stress, post-traumatic stress disorder) and positive psychological outcomes (resilient coping, wellbeing). RESULTS: We found high rates of distress across all participants, exacerbated by severity of bushfire exposure. For people who were bushfire-affected, being older, having less financial stress, and having no or fewer pre-existing mental disorders predicted both lower distress and higher positive outcomes. Being male or having less income loss also predicted positive outcomes. Severity of exposure, higher education and higher COVID-19-related stressors predicted both higher distress and higher positive outcomes. Pre-existing physical health diagnosis and previous bushfire experience did not significantly predict distress or positive outcomes. RECOMMENDATIONS: To promote disaster resilience, we recommend investment in mental health, particularly for younger adults and for those in rural and remote areas. We also recommend investment in mechanisms to protect against financial distress and the development of a broader definition of bushfire-related impacts than is currently used to capture brushfires' far-reaching effects.


Subject(s)
COVID-19 , Disasters , Resilience, Psychological , Adult , Humans , Male , Female , Mental Health , Australia/epidemiology , Stress, Psychological
6.
bioRxiv ; 2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37786705

ABSTRACT

Mesenchymal plasticity has been extensively described in advanced and metastatic epithelial cancers; however, its functional role in malignant progression, metastatic dissemination and therapy response is controversial. More importantly, the role of epithelial mesenchymal transition (EMT) and cell plasticity in tumor heterogeneity, clonal selection and clonal evolution is poorly understood. Functionally, our work clarifies the contribution of EMT to malignant progression and metastasis in pancreatic cancer. We leveraged ad hoc somatic mosaic genome engineering, lineage tracing and ablation technologies and dynamic genetic reporters to trace and ablate tumor-specific lineages along the phenotypic spectrum of epithelial to mesenchymal plasticity. The experimental evidences clarify the essential contribution of mesenchymal lineages to pancreatic cancer evolution and metastatic dissemination. Spatial genomic analysis combined with single cell transcriptomic and epigenomic profiling of epithelial and mesenchymal lineages reveals that EMT promotes with the emergence of chromosomal instability (CIN). Specifically tumor lineages with mesenchymal features display highly conserved patterns of genomic evolution including complex structural genomic rearrangements and chromotriptic events. Genetic ablation of mesenchymal lineages robustly abolished these mutational processes and evolutionary patterns, as confirmed by cross species analysis of pancreatic and other human epithelial cancers. Mechanistically, we discovered that malignant cells with mesenchymal features display increased chromatin accessibility, particularly in the pericentromeric and centromeric regions, which in turn results in delayed mitosis and catastrophic cell division. Therefore, EMT favors the emergence of high-fitness tumor cells, strongly supporting the concept of a cell-state, lineage-restricted patterns of evolution, where cancer cell sub-clonal speciation is propagated to progenies only through restricted functional compartments. Restraining those evolutionary routes through genetic ablation of clones capable of mesenchymal plasticity and extinction of the derived lineages completely abrogates the malignant potential of one of the most aggressive form of human cancer.

7.
Leukemia ; 37(10): 2006-2016, 2023 10.
Article in English | MEDLINE | ID: mdl-37634013

ABSTRACT

Patients harboring CRLF2-rearranged B-lineage acute lymphocytic leukemia (B-ALL) face a 5-year survival rate as low as 20%. While significant gains have been made to position targeted therapies for B-ALL treatment, continued efforts are needed to develop therapeutic options with improved duration of response. Here, first we have demonstrated that patients with CRLF2-rearranged Ph-like ALL harbor elevated thymic stromal lymphopoietin receptor (TSLPR) expression, which is comparable with CD19. Then we present and evaluate the anti-tumor characteristics of 1B7/CD3, a novel CD3-redirecting bispecific antibody (BsAb) that co-targets TSLPR. In vitro, 1B7/CD3 exhibits optimal binding to both human and cynomolgus CD3 and TSLPR. Further, 1B7/CD3 was shown to induce potent T cell activation and tumor lytic activity in both cell lines and primary B-ALL patient samples. Using humanized cell- or patient-derived xenograft models, 1B7/CD3 treatment was shown to trigger dose-dependent tumor remission or growth inhibition across donors as well as induce T cell activation and expansion. Pharmacokinetic studies in murine models revealed 1B7/CD3 to exhibit a prolonged half-life. Finally, toxicology studies using cynomolgus monkeys found that the maximum tolerated dose of 1B7/CD3 was ≤1 mg/kg. Overall, our preclinical data provide the framework for the clinical evaluation of 1B7/CD3 in patients with CRLF2-rearranged B-ALL.


Subject(s)
Antibodies, Bispecific , Lymphoma, B-Cell , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma , Humans , Animals , Mice , CD3 Complex , Antibodies, Bispecific/pharmacology , Antibodies, Bispecific/therapeutic use , Lymphoma, B-Cell/drug therapy , Antigens, CD19 , Cell Line , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Receptors, Cytokine
8.
Cancer Cell ; 41(9): 1606-1620.e8, 2023 09 11.
Article in English | MEDLINE | ID: mdl-37625401

ABSTRACT

The KRASG12D mutation is present in nearly half of pancreatic adenocarcinomas (PDAC). We investigated the effects of inhibiting the KRASG12D mutant protein with MRTX1133, a non-covalent small molecule inhibitor of KRASG12D, on early and advanced PDAC and its influence on the tumor microenvironment. Employing 16 different models of KRASG12D-driven PDAC, we demonstrate that MRTX1133 reverses early PDAC growth, increases intratumoral CD8+ effector T cells, decreases myeloid infiltration, and reprograms cancer-associated fibroblasts. MRTX1133 leads to regression of both established PanINs and advanced PDAC. Regression of advanced PDAC requires CD8+ T cells and immune checkpoint blockade (ICB) synergizes with MRTX1133 to eradicate PDAC and prolong overall survival. Mechanistically, inhibition of KRASG12D in advanced PDAC and human patient derived organoids induces FAS expression in cancer cells and facilitates CD8+ T cell-mediated death. Collectively, this study provides a rationale for a synergistic combination of MRTX1133 with ICB in clinical trials.


Subject(s)
CD8-Positive T-Lymphocytes , Pancreatic Neoplasms , Proto-Oncogene Proteins p21(ras) , Humans , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Proto-Oncogene Proteins p21(ras)/antagonists & inhibitors , Proto-Oncogene Proteins p21(ras)/genetics , Tumor Microenvironment
9.
Article in English | MEDLINE | ID: mdl-37428193

ABSTRACT

PURPOSE: As environmental disasters become more common and severe due to climate change, there is a growing need for strategies to bolster recovery that are proactive, cost-effective, and which mobilise community resources. AIMS: We propose that building social group connections is a particularly promising strategy for supporting mental health in communities affected by environmental disasters. METHODS: We tested the social identity model of identity change in a disaster context among 627 people substantially affected by the 2019-2020 Australian fires. RESULTS: We found high levels of post-traumatic stress, strongly related to severity of disaster exposure, but also evidence of psychological resilience. Distress and resilience were weakly positively correlated. Having stronger social group connections pre-disaster was associated with less distress and more resilience 12-18 months after the disaster, via three pathways: greater social identification with the disaster-affected community, greater continuity of social group ties, and greater formation of new social group ties. New group ties were a mixed blessing, positively predicting both resilience and distress. CONCLUSIONS: We conclude that investment in social resources is key to supporting mental health outcomes, not just reactively in the aftermath of disasters, but also proactively in communities most at risk.

10.
Nat Cancer ; 4(7): 984-1000, 2023 07.
Article in English | MEDLINE | ID: mdl-37365326

ABSTRACT

Molecular routes to metastatic dissemination are critical determinants of aggressive cancers. Through in vivo CRISPR-Cas9 genome editing, we generated somatic mosaic genetically engineered models that faithfully recapitulate metastatic renal tumors. Disruption of 9p21 locus is an evolutionary driver to systemic disease through the rapid acquisition of complex karyotypes in cancer cells. Cross-species analysis revealed that recurrent patterns of copy number variations, including 21q loss and dysregulation of the interferon pathway, are major drivers of metastatic potential. In vitro and in vivo genomic engineering, leveraging loss-of-function studies, along with a model of partial trisomy of chromosome 21q, demonstrated a dosage-dependent effect of the interferon receptor genes cluster as an adaptive mechanism to deleterious chromosomal instability in metastatic progression. This work provides critical knowledge on drivers of renal cell carcinoma progression and defines the primary role of interferon signaling in constraining the propagation of aneuploid clones in cancer evolution.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/genetics , DNA Copy Number Variations/genetics , Chromosomal Instability/genetics , Aneuploidy , Kidney Neoplasms/genetics
11.
Proc Natl Acad Sci U S A ; 120(21): e2209639120, 2023 05 23.
Article in English | MEDLINE | ID: mdl-37186844

ABSTRACT

Renal medullary carcinoma (RMC) is an aggressive kidney cancer that almost exclusively develops in individuals with sickle cell trait (SCT) and is always characterized by loss of the tumor suppressor SMARCB1. Because renal ischemia induced by red blood cell sickling exacerbates chronic renal medullary hypoxia in vivo, we investigated whether the loss of SMARCB1 confers a survival advantage under the setting of SCT. Hypoxic stress, which naturally occurs within the renal medulla, is elevated under the setting of SCT. Our findings showed that hypoxia-induced SMARCB1 degradation protected renal cells from hypoxic stress. SMARCB1 wild-type renal tumors exhibited lower levels of SMARCB1 and more aggressive growth in mice harboring the SCT mutation in human hemoglobin A (HbA) than in control mice harboring wild-type human HbA. Consistent with established clinical observations, SMARCB1-null renal tumors were refractory to hypoxia-inducing therapeutic inhibition of angiogenesis. Further, reconstitution of SMARCB1 restored renal tumor sensitivity to hypoxic stress in vitro and in vivo. Together, our results demonstrate a physiological role for SMARCB1 degradation in response to hypoxic stress, connect the renal medullary hypoxia induced by SCT with an increased risk of SMARCB1-negative RMC, and shed light into the mechanisms mediating the resistance of SMARCB1-null renal tumors against angiogenesis inhibition therapies.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Sickle Cell Trait , Animals , Humans , Mice , Carcinoma, Renal Cell/pathology , Hypoxia/genetics , Hypoxia/metabolism , Kidney/metabolism , Kidney Neoplasms/pathology , Sickle Cell Trait/genetics , Sickle Cell Trait/metabolism , SMARCB1 Protein/genetics , SMARCB1 Protein/metabolism
12.
Clin Transl Med ; 13(5): e1267, 2023 05.
Article in English | MEDLINE | ID: mdl-37226898

ABSTRACT

BACKGROUND: Renal medullary carcinoma (RMC) is a highly aggressive cancer in need of new therapeutic strategies. The neddylation pathway can protect cells from DNA damage induced by the platinum-based chemotherapy used in RMC. We investigated if neddylation inhibition with pevonedistat will synergistically enhance antitumour effects of platinum-based chemotherapy in RMC. METHODS: We evaluated the IC50 concentrations of the neddylation-activating enzyme inhibitor pevonedistat in vitro in RMC cell lines. Bliss synergy scores were calculated using growth inhibition assays following treatment with varying concentrations of pevonedistat and carboplatin. Protein expression was assessed by western blot and immunofluorescence assays. The efficacy of pevonedistat alone or in combination with platinum-based chemotherapy was evaluated in vivo in platinum-naïve and platinum-experienced patient-derived xenograft (PDX) models of RMC. RESULTS: The RMC cell lines demonstrated IC50 concentrations of pevonedistat below the maximum tolerated dose in humans. When combined with carboplatin, pevonedistat demonstrated a significant in vitro synergistic effect. Treatment with carboplatin alone increased nuclear ERCC1 levels used to repair the interstrand crosslinks induced by platinum salts. Conversely, the addition of pevonedistat to carboplatin led to p53 upregulation resulting in FANCD2 suppression and reduced nuclear ERCC1 levels. The addition of pevonedistat to platinum-based chemotherapy significantly inhibited tumour growth in both platinum-naïve and platinum-experienced PDX models of RMC (p < .01). CONCLUSIONS: Our results suggest that pevonedistat synergises with carboplatin to inhibit RMC cell and tumour growth through inhibition of DNA damage repair. These findings support the development of a clinical trial combining pevonedistat with platinum-based chemotherapy for RMC.


Subject(s)
Carcinoma, Medullary , Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Carboplatin/pharmacology , Carboplatin/therapeutic use , Carcinoma, Renal Cell/drug therapy , Kidney Neoplasms/drug therapy
13.
bioRxiv ; 2023 Feb 18.
Article in English | MEDLINE | ID: mdl-36824971

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is associated with mutations in Kras, a known oncogenic driver of PDAC; and the KRAS G12D mutation is present in nearly half of PDAC patients. Recently, a non-covalent small molecule inhibitor (MRTX1133) was identified with specificity to the Kras G12D mutant protein. Here we explore the impact of Kras G12D inhibition by MRTX1133 on advanced PDAC and its influence on the tumor microenvironment. Employing different orthotopic xenograft and syngeneic tumor models, eight different PDXs, and two different autochthonous genetic models, we demonstrate that MRTX1133 reverses early PDAC growth, increases intratumoral CD8 + effector T cells, decreases myeloid infiltration, and reprograms cancer associated fibroblasts. Autochthonous genetic mouse models treated with MRTX1133 leads to regression of both established PanINs and advanced PDAC. Regression of advanced PDAC requires CD8 + T cells and immune checkpoint blockade therapy (iCBT) synergizes with MRTX1133 to eradicate PDAC and prolong overall survival. Mechanistically, inhibition of mutant Kras in advanced PDAC and human patient derived organoids (PDOs) induces Fas expression in cancer cells and facilitates CD8 + T cell mediated death. These results demonstrate the efficacy of MRTX1133 in different mouse models of PDAC associated with reprogramming of stromal fibroblasts and a dependency on CD8 + T cell mediated tumor clearance. Collectively, this study provides a rationale for a synergistic combination of MRTX1133 with iCBT in clinical trials.

14.
bioRxiv ; 2023 Jan 23.
Article in English | MEDLINE | ID: mdl-36747713

ABSTRACT

Efforts to improve the anti-tumor response to KRASG12C targeted therapy have benefited from leveraging combination approaches. Here, we compare the anti-tumor response induced by the SOS1-KRAS interaction inhibitor, BI-3406, combined with a KRASG12C inhibitor (KRASG12Ci) to those induced by KRASG12Ci alone or combined with SHP2 or EGFR inhibitors. In lung cancer and colorectal cancer (CRC) models, BI-3406 plus KRASG12Ci induces an anti-tumor response stronger than that observed with KRASG12Ci alone and comparable to those by the other combinations. This enhanced anti-tumor response is associated with a stronger and extended suppression of RAS-MAPK signaling. Importantly, BI-3406 plus KRASG12Ci treatment delays the emergence of acquired adagrasib resistance in both CRC and lung cancer models and is associated with re-establishment of anti-proliferative activity in KRASG12Ci-resistant CRC models. Our findings position KRASG12C plus SOS1 inhibition therapy as a promising strategy for treating both KRASG12C-mutated tumors as well as for addressing acquired resistance to KRASG12Ci.

15.
Clin Cancer Res ; 29(7): 1344-1359, 2023 04 03.
Article in English | MEDLINE | ID: mdl-36689560

ABSTRACT

PURPOSE: Cisplatin (CDDP)-based chemotherapy is a first-line treatment for patients with advanced head and neck squamous cell carcinomas (HNSCC), despite a high rate of treatment failures, acquired resistance, and subsequent aggressive behavior. The purpose of this study was to study the mechanism of CDDP resistance and metastasis in HNSCC. We investigated the role of NRF2 pathway activation as a driven event for tumor progression and metastasis of HNSCC. EXPERIMENTAL DESIGN: Human HNSCC cell lines that are highly resistant to CDDP were generated. Clonogenic survival assays and a mouse model of oral cancer were used to examine the impact of NRF2 activation in vitro and in vivo on CDDP sensitivity and development of metastasis. Western blotting, immunostaining, whole-exome sequencing, single-cell transcriptomic and epigenomic profiling platforms were performed to dissect clonal evolution and molecular mechanisms. RESULTS: Implantation of CDDP-resistant HNSCC cells into the tongues of nude mice resulted in a very high rate of distant metastases. The CDDP-resistant cells had significantly higher expression of NRF2 pathway genes in the presence of newly acquired KEAP1 mutations, or via epigenomic activation of target genes. Knockdown of NRF2 or restoration of the wild-type KEAP1 genes resensitized resistant cells to CDDP and decreased distant metastasis (DM). Finally, treatment with inhibitor of glutaminase-1, a NRF2 target gene, alleviated CDDP resistance. CONCLUSIONS: CDDP resistance and development of DM are associated with dysregulated and epigenetically reprogrammed KEAP1-NRF2 signaling pathway. A strategy targeting KEAP1/NRF2 pathway or glutamine metabolism deserves further clinical investigation in patients with CDDP-resistant head and neck tumors.


Subject(s)
Antineoplastic Agents , Head and Neck Neoplasms , NF-E2-Related Factor 2 , Squamous Cell Carcinoma of Head and Neck , Animals , Humans , Mice , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Cisplatin/pharmacology , Cisplatin/therapeutic use , Drug Resistance, Neoplasm/genetics , Epigenesis, Genetic , Epigenomics , Head and Neck Neoplasms/drug therapy , Head and Neck Neoplasms/genetics , Kelch-Like ECH-Associated Protein 1/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , Mice, Nude , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Signal Transduction , Squamous Cell Carcinoma of Head and Neck/drug therapy , Squamous Cell Carcinoma of Head and Neck/genetics
16.
Nat Med ; 29(1): 115-126, 2023 01.
Article in English | MEDLINE | ID: mdl-36658425

ABSTRACT

Although targeting oxidative phosphorylation (OXPHOS) is a rational anticancer strategy, clinical benefit with OXPHOS inhibitors has yet to be achieved. Here we advanced IACS-010759, a highly potent and selective small-molecule complex I inhibitor, into two dose-escalation phase I trials in patients with relapsed/refractory acute myeloid leukemia (NCT02882321, n = 17) and advanced solid tumors (NCT03291938, n = 23). The primary endpoints were safety, tolerability, maximum tolerated dose and recommended phase 2 dose (RP2D) of IACS-010759. The PK, PD, and preliminary antitumor activities of IACS-010759 in patients were also evaluated as secondary endpoints in both clinical trials. IACS-010759 had a narrow therapeutic index with emergent dose-limiting toxicities, including elevated blood lactate and neurotoxicity, which obstructed efforts to maintain target exposure. Consequently no RP2D was established, only modest target inhibition and limited antitumor activity were observed at tolerated doses, and both trials were discontinued. Reverse translational studies in mice demonstrated that IACS-010759 induced behavioral and physiological changes indicative of peripheral neuropathy, which were minimized with the coadministration of a histone deacetylase 6 inhibitor. Additional studies are needed to elucidate the association between OXPHOS inhibition and neurotoxicity, and caution is warranted in the continued development of complex I inhibitors as antitumor agents.


Subject(s)
Antineoplastic Agents , Leukemia, Myeloid, Acute , Neoplasms , Animals , Mice , Antineoplastic Agents/adverse effects , Histone Deacetylase Inhibitors/therapeutic use , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/pathology , Neoplasms/pathology , Oxidative Phosphorylation , Humans
17.
JCO Clin Cancer Inform ; 6: e2200040, 2022 07.
Article in English | MEDLINE | ID: mdl-35944232

ABSTRACT

PURPOSE: Advances in biological measurement technologies are enabling large-scale studies of patient cohorts across multiple omics platforms. Holistic analysis of these data can generate actionable insights for translational research and necessitate new approaches for data integration and mining. METHODS: We present a novel approach for integrating data across platforms on the basis of the shared nearest neighbors algorithm and use it to create a network of multiplatform data from the immunogenomic profiling of non-small-cell lung cancer project. RESULTS: Benchmarking demonstrates that the shared nearest neighbors-based network approach outperforms a traditional gene-gene network in capturing established interactions while providing new ones on the basis of the interplay between measurements from different platforms. When used to examine patient characteristics of interest, our approach provided signatures associated with and new leads related to recurrence and TP53 oncogenotype. CONCLUSION: The network developed offers an unprecedented, holistic view into immunogenomic profiling of non-small-cell lung cancer, which can be explored through the accompanying interactive browser that we built.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Carcinoma, Non-Small-Cell Lung/genetics , Cluster Analysis , Gene Expression Profiling , Humans , Lung Neoplasms/genetics , Software
18.
Cancers (Basel) ; 13(23)2021 Nov 30.
Article in English | MEDLINE | ID: mdl-34885132

ABSTRACT

Renal medullary carcinoma (RMC) is a lethal malignancy affecting individuals with sickle hemoglobinopathies. Currently, no modifiable risk factors are known. We aimed to determine whether high-intensity exercise is a risk factor for RMC in individuals with sickle cell trait (SCT). We used multiple approaches to triangulate our conclusion. First, a case-control study was conducted at a single tertiary-care facility. Consecutive patients with RMC were compared to matched controls with similarly advanced genitourinary malignancies in a 1:2 ratio and compared on rates of physical activity and anthropometric measures, including skeletal muscle surface area. Next, we compared the rate of military service among our RMC patients to a similarly aged population of black individuals with SCT in the U.S. Further, we used genetically engineered mouse models of SCT to study the impact of exercise on renal medullary hypoxia. Compared with matched controls, patients with RMC reported higher physical activity and had higher skeletal muscle surface area. A higher proportion of patients with RMC reported military service than expected compared to the similarly-aged population of black individuals with SCT. When exposed to high-intensity exercise, mice with SCT demonstrated significantly higher renal medulla hypoxia compared to wild-type controls. These data suggest high-intensity exercise is the first modifiable risk factor for RMC in individuals with SCT.

19.
NPJ Breast Cancer ; 7(1): 152, 2021 Dec 02.
Article in English | MEDLINE | ID: mdl-34857765

ABSTRACT

The relationship between ATR/Chk1 activity and replication stress, coupled with the development of potent and tolerable inhibitors of this pathway, has led to the clinical exploration of ATR and Chk1 inhibitors (ATRi/Chk1i) as anticancer therapies for single-agent or combinatorial application. The clinical efficacy of these therapies relies on the ability to ascertain which patient populations are most likely to benefit, so there is intense interest in identifying predictive biomarkers of response. To comprehensively evaluate the components that modulate cancer cell sensitivity to replication stress induced by Chk1i, we performed a synthetic-lethal drop-out screen in a cell line derived from a patient with triple-negative breast cancer (TNBC), using a pooled barcoded shRNA library targeting ~350 genes involved in DNA replication, DNA damage repair, and cycle progression. In addition, we sought to compare the relative requirement of these genes when DNA fidelity is challenged by clinically relevant anticancer breast cancer drugs, including cisplatin and PARP1/2 inhibitors, that have different mechanisms of action. This global comparison is critical for understanding not only which agents should be used together for combinatorial therapies in breast cancer patients, but also the genetic context in which these therapies will be most effective, and when a single-agent therapy will be sufficient to provide maximum therapeutic benefit to the patient. We identified unique potentiators of response to ATRi/Chk1i and describe a new role for components of the cytosolic iron-sulfur assembly (CIA) pathway, MMS19 and CIA2B-FAM96B, in replication stress tolerance of TNBC.

20.
Oncoimmunology ; 10(1): 1992880, 2021.
Article in English | MEDLINE | ID: mdl-34777916

ABSTRACT

Targeted and immunotherapy regimens have revolutionized the treatment of advanced melanoma patients. Despite this, only a subset of patients respond durably. Recently, combination strategies of BRAF/MEK inhibitors with immune checkpoint inhibitor monotherapy (α-CTLA-4 or α-PD-1) have increased the rate of durable responses. Based on evidence from our group and others, these therapies appear synergistic, but at the cost of significant toxicity. We know from other treatment paradigms (e.g. hematologic malignancies) that combination strategies with multi-drug regimens (>4 drugs) are associated with more durable disease control. To better understand the mechanism of these improved outcomes, and to identify and prioritize new strategies for testing, we studied several multi-drug regimens combining BRAF/MEK targeted therapy and immunotherapy combinations in a Braf-mutant murine melanoma model (BrafV600E/Pten-/- ). Short-term treatment with α-PD-1 and α-CTLA-4 monotherapies were relatively ineffective, while treatment with α-OX40 demonstrated some efficacy [17% of mice with no evidence of disease, (NED), at 60-days]. Outcomes were improved in the combined α-OX40/α-PD-1 group (42% NED). Short-term treatment with quadruplet therapy of immunotherapy doublets in combination with targeted therapy [dabrafenib and trametinib (DT)] was associated with excellent tumor control, with 100% of mice having NED after combined DT/α-CTLA-4/α-PD-1 or DT/α-OX40/α-PD-1. Notably, tumors from mice in these groups demonstrated a high proportion of effector memory T cells, and immunologic memory was maintained with tumor re-challenge. Together, these data provide important evidence regarding the potential utility of multi-drug therapy in treating advanced melanoma and suggest these models can be used to guide and prioritize combinatorial treatment strategies.


Subject(s)
Melanoma , Pharmaceutical Preparations , Animals , Humans , Immunotherapy , Melanoma/drug therapy , Melanoma/genetics , Memory T Cells , Mice , Mitogen-Activated Protein Kinase Kinases , Proto-Oncogene Proteins B-raf/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...