Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 250: 126248, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37562465

ABSTRACT

The global threat of infectious diseases and antibiotic resistance calls for the development of potent antimicrobial agents integrated with hydrogel for effective control and treatment. Hydrogel is advanced biomaterials compounds. Hydrogel is an advanced biomaterial compound that offers tunable physical and chemical properties, which can be tailored to specific biomedical applications. This study investigates the antibacterial properties of pectin/polyethylene oxide (PEC/PEO)-based poly acrylamide hydrogels containing 5 wt% nano-metal oxides (TiO2, CaO, MgO, and ZnO) synthesized through gamma irradiation at a dose of 30 kGy. This technique allows for sterilization and effectively incorporating the metal oxide nanoparticles within the hydrogel matrix. Characterization of the nanocomposites is performed using Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). Incorporating metal oxide nanoparticles induces noticeable changes in the FTIR spectra, confirming interactions between the nanoparticles and the hydrogel matrix. The antibacterial activity of the nanocomposites is evaluated against different bacteria, and the results demonstrate significant inhibitory effects, especially for MgO- and ZnO-hydrogel nanocomposites against P. mirabilis, S. aureus, P. aeruginosa, and C. albicans, highlighting their potential as antimicrobial agents. The 5 wt% of MgO, ZnO, TiO2 and CaO inside PEO/PEC-co-AAm hydrogel nanocomposites exhibited significant inhibitory effects, with a respective optical density at λ = 600 nm (OD600) values of 0.896 nm, 0.986 nm, 1.250 nm, and 1.980 nm compared to the control and hydrogel alone (OD600 values of 2.88 nm and 2.72 nm, respectively). The antibacterial activity of the (MgO-, ZnO-, TiO2-, and CaO-hydrogel) was enhanced, resulting in the inhibition of S. aureus growth by approximately 68.89 %, 65.86 %, 56.25 %, and 31.94 %, respectively. Incorporating nanoparticles into a hydrogel matrix introduces novelty by preventing their aggregation and synergistically enhancing the antibacterial activity. The hydrogel's porous structure and water content facilitate the physical entrapment of bacteria and promote proximity to the metal oxide nanoparticles, resulting in improved interaction and antimicrobial effectiveness. Moreover, the hydrogel ability to absorb and entrap resistance compounds released by bacteria, coupled with its ability to supply water for the generation of reactive oxygen species, further contributes to its antimicrobial properties.


Subject(s)
Metal Nanoparticles , Nanocomposites , Zinc Oxide , Hydrogels/pharmacology , Hydrogels/chemistry , Zinc Oxide/pharmacology , Zinc Oxide/chemistry , Magnesium Oxide/pharmacology , Staphylococcus aureus , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Oxides/pharmacology , Biocompatible Materials/pharmacology , Metal Nanoparticles/chemistry , Bacteria , Water/pharmacology , X-Ray Diffraction , Spectroscopy, Fourier Transform Infrared , Nanocomposites/chemistry
2.
Carbohydr Polym ; 263: 117975, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-33858572

ABSTRACT

Particularly, chitosan (Cs) loaded with drug cannot pass through the colonic region, often leading in the bursting drug release in the stomach due to its solubility in gastric contents. The novelty of the current article is to solve this limitation by performing gamma irradiation cross-linking of Cs with two anionic polymers of (acrylic acid)-co-(2-acrylamido-2-methylpropane-sulfonic acid) (AAc/AMPS) to give amphiphilic hydrogel. The shifted in the characteristic FTIR peaks of Cs in the (Cs/AAc/AMPS) confirm the exits of inter-molecular interactions that make Cs and (AAc/AMPS) are miscible. Swelling experiments under different pH indicated that the (Cs/AAc/AMPS) hydrogels were significantly sensitive to pH change. The results give the possibility to use the obtained (Cs/AAc/AMPS) hydrogel on drug delivery system. The in vitro Fluorouracil (5-FU) releasing from (Cs/AAc/AMPS) matrix was examined under the influence of pH1 and pH7.The results confirmed the hydrogels capability to release 96 % of 5-FU drug at pH 7 after 7 h.


Subject(s)
Chitosan/chemical synthesis , Colonic Neoplasms/drug therapy , Drug Delivery Systems/methods , Gamma Rays , Hydrogels/chemical synthesis , Polymers/chemical synthesis , Surface-Active Agents/chemical synthesis , Acrylamides/chemistry , Acrylates/chemistry , Alkanesulfonates/chemistry , Antimetabolites, Antineoplastic/chemistry , Chitosan/chemistry , Cross-Linking Reagents , Drug Liberation , Fluorouracil/chemistry , Humans , Hydrogels/chemistry , Hydrogen-Ion Concentration , Kinetics , Polymers/chemistry , Surface-Active Agents/chemistry , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...