Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(6)2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38542301

ABSTRACT

FacioScapuloHumeral muscular Dystrophy (FSHD) is one of the most prevalent inherited muscle disorders and is linked to the inappropriate expression of the DUX4 transcription factor in skeletal muscles. The deregulated molecular network causing FSHD muscle dysfunction and pathology is not well understood. It has been shown that the hypoxia response factor HIF1α is critically disturbed in FSHD and has a major role in DUX4-induced cell death. In this study, we further explored the relationship between DUX4 and HIF1α. We found that the DUX4 and HIF1α link differed according to the stage of myogenic differentiation and was conserved between human and mouse muscle. Furthermore, we found that HIF1α knockdown in a mouse model of DUX4 local expression exacerbated DUX4-mediated muscle fibrosis. Our data indicate that the suggested role of HIF1α in DUX4 toxicity is complex and that targeting HIF1α might be challenging in the context of FSHD therapeutic approaches.


Subject(s)
Muscular Dystrophy, Facioscapulohumeral , Animals , Humans , Mice , Cell Differentiation/genetics , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Muscle Cells/metabolism , Muscle, Skeletal/metabolism , Muscular Dystrophy, Facioscapulohumeral/genetics , Muscular Dystrophy, Facioscapulohumeral/metabolism
2.
Skelet Muscle ; 13(1): 21, 2023 12 16.
Article in English | MEDLINE | ID: mdl-38104132

ABSTRACT

BACKGROUND: Hypoxia is known to modify skeletal muscle biological functions and muscle regeneration. However, the mechanisms underlying the effects of hypoxia on human myoblast differentiation remain unclear. The hypoxic response pathway is of particular interest in patients with hereditary muscular dystrophies since many present respiratory impairment and muscle regeneration defects. For example, an altered hypoxia response characterizes the muscles of patients with facioscapulohumeral dystrophy (FSHD). METHODS: We examined the impact of hypoxia on the differentiation of human immortalized myoblasts (LHCN-M2) cultured in normoxia (PO2: 21%) or hypoxia (PO2: 1%). Cells were grown in proliferation (myoblasts) or differentiation medium for 2 (myocytes) or 4 days (myotubes). We evaluated proliferation rate by EdU incorporation, used myogenin-positive nuclei as a differentiation marker for myocytes, and determined the fusion index and myosin heavy chain-positive area in myotubes. The contribution of HIF1α was studied by gain (CoCl2) and loss (siRNAs) of function experiments. We further examined hypoxia in LHCN-M2-iDUX4 myoblasts with inducible expression of DUX4, the transcription factor underlying FSHD pathology. RESULTS: We found that the hypoxic response did not impact myoblast proliferation but activated precocious myogenic differentiation and that HIF1α was critical for this process. Hypoxia also enhanced the late differentiation of human myocytes, but in an HIF1α-independent manner. Interestingly, the impact of hypoxia on muscle cell proliferation was influenced by dexamethasone. In the FSHD pathological context, DUX4 suppressed HIF1α-mediated precocious muscle differentiation. CONCLUSION: Hypoxia stimulates myogenic differentiation in healthy myoblasts, with HIF1α-dependent early steps. In FSHD, DUX4-HIF1α interplay indicates a novel mechanism by which DUX4 could interfere with HIF1α function in the myogenic program and therefore with FSHD muscle performance and regeneration.


Subject(s)
Homeodomain Proteins , Hypoxia-Inducible Factor 1, alpha Subunit , Muscular Dystrophy, Facioscapulohumeral , Humans , Cell Differentiation , Gene Expression Regulation , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/metabolism , Muscular Dystrophy, Facioscapulohumeral/metabolism , Myoblasts/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
3.
J Biomed Mater Res A ; 111(4): 488-501, 2023 04.
Article in English | MEDLINE | ID: mdl-36355631

ABSTRACT

Fibrin sealants are well-established components of the surgical toolbox, especially in procedures that harbor a high risk of perioperative bleeding. Their widespread use as hemostats, sealants or tissue-adhesives in various surgical settings has shown that the choice of the appropriate sealant system affects the clinical outcome. While many studies have compared the hemostatic efficiency of fibrin sealants to that of other natural or synthetic sealants, there is still limited data on how subtle differences in fibrin sealant formulations relate to their biological performance. Here, we performed an in-depth physicochemical and biological characterization of the two most commonly used fibrin sealants in the US and Europe: TISSEEL™ ("FS") and VISTASEAL™/VERASEAL™ ("FS+Osm"). Our chemical analyses demonstrated differences between the two sealants, with lower fibrinogen concentrations and supraphysiological osmolality in the FS+Osm formulation. Rheological testing revealed FS clots have greater clot stiffness, which strongly correlated with network density. Ultrastructural analysis by scanning electron microscopy revealed differences between FS and FS+Osm fibrin networks, the latter characterized by a largely amorphous hydrogel structure in contrast to the physiological fibrillar network of FS. Cytocompatibility experiments with human fibroblasts seeded on FS and FS+Osm fibrin networks, or cultured in presence of sealant extracts, revealed that FS+Osm induced apoptosis, which was not observed with FS. Although differential sealant osmolality and amounts of fibrinogen, as well as the presence of Factor XIII or additives such as antifibrinolytics, may explain the mechanical and structural differences observed between the two fibrin sealants, none of these substances are known to cause apoptosis at the respective concentrations in the sealant formulation. We thus conclude that hyper osmolality in the FS+Osm formulation is the primary trigger of apoptosis-a mechanism that should be evaluated in more detail, as it may affect the cellular wound healing response in situ.


Subject(s)
Hemostatics , Tissue Adhesives , Humans , Fibrin Tissue Adhesive/analysis , Fibrin Tissue Adhesive/chemistry , Fibrin Tissue Adhesive/pharmacology , Hemostatics/pharmacology , Wound Healing , Tissue Adhesives/chemistry , Fibrinogen/pharmacology
4.
Am J Sports Med ; 50(12): 3355-3367, 2022 10.
Article in English | MEDLINE | ID: mdl-36053026

ABSTRACT

BACKGROUND: Zoledronic acid improves bone microarchitecture and biomechanical properties after chronic rotator cuff repair (RCR) in rats. Besides the positive effects of zoledronic acid on bone mineral density and bone microarchitecture, bisphosphonates have positive effects on skeletal muscle function. PURPOSES/HYPOTHESIS: The purposes of this study were to (1) longitudinally evaluate circulating bone- and muscle-specific serum micro-ribonucleic acids (miRNAs) and (2) investigate supraspinatus muscle tissue after tenotomy and delayed RCR in a rat model. It was hypothesized that zoledronic acid would improve muscle regeneration after chronic RCR in rats. STUDY DESIGN: Controlled laboratory study. METHODS: A total of 34 male Sprague-Dawley rats underwent unilateral (left) supraspinatus tenotomy (time point 1) with delayed transosseous RCR after 3 weeks (time point 2). All rats were sacrificed 8 weeks after RCR (time point 3). Animals were randomly assigned to 2 groups. One day after RCR, the control group was given 1 mL of subcutaneous saline solution, and the intervention group was treated with a subcutaneous single-dose of 100 µg/kg body weight of zoledronic acid. All 34 study animals underwent miRNA analysis at all 3 time points. In 4 animals of each group, histological analyses as well as gene expression analyses were conducted. RESULTS: Circulating miRNAs showed significantly different expressions between both study groups. In the control group, a significant downregulation was observed for muscle-specific miR-1-3p (P = .004), miR-133a-3p (P < .001), and miR-133b (P < .001). Histological analyses showed significantly higher rates of regenerating myofibers on the operated side (left) of both study groups compared with the nonoperated side (right; P = .002). On the nonoperated side, significantly higher rates of regenerating myofibers were observed in the intervention group compared with the control group (P = .031). The myofiber cross-sectional area revealed significantly smaller myofibers on both sides within the intervention group compared with both sides of the control group (P < .001). Within the intervention group, significantly higher expression levels of muscle development/regeneration marker genes embryonal Myosin heavy chain (P = .017) and neonatal Myosin heavy chain (P = .016) were observed on the nonoperated side compared with the operated side. CONCLUSION: An adjuvant single-dose of zoledronic acid after RCR in a chronic defect model in rats led to significant differences in bone- and muscle-specific miRNA levels. Therefore, miR-1-3p, miR-133a-3p, and miR-133b might be used as biomarkers for muscle regeneration after RCR. CLINICAL RELEVANCE: Adjuvant treatment with zoledronic acid may improve muscle regeneration after chronic RCR in humans, thus counteracting fatty muscle infiltration and atrophy.


Subject(s)
MicroRNAs , Rotator Cuff Injuries , Animals , Humans , Male , MicroRNAs/genetics , Myosin Heavy Chains , Rats , Rats, Sprague-Dawley , Rodentia , Rotator Cuff/pathology , Rotator Cuff/surgery , Rotator Cuff Injuries/surgery , Saline Solution , Wound Healing , Zoledronic Acid
5.
Front Bioeng Biotechnol ; 10: 836520, 2022.
Article in English | MEDLINE | ID: mdl-35669058

ABSTRACT

Fibrin hydrogels have proven highly suitable scaffold materials for skeletal muscle tissue engineering in the past. Certain parameters of those types of scaffolds, however, greatly affect cellular mechanobiology and therefore the myogenic outcome. The aim of this study was to identify the influence of apparent elastic properties of fibrin scaffolds in 2D and 3D on myoblasts and evaluate if those effects differ between murine and human cells. Therefore, myoblasts were cultured on fibrin-coated multiwell plates ("2D") or embedded in fibrin hydrogels ("3D") with different elastic moduli. Firstly, we established an almost linear correlation between hydrogels' fibrinogen concentrations and apparent elastic moduli in the range of 7.5 mg/ml to 30 mg/ml fibrinogen (corresponds to a range of 7.7-30.9 kPa). The effects of fibrin hydrogel elastic modulus on myoblast proliferation changed depending on culture type (2D vs 3D) with an inhibitory effect at higher fibrinogen concentrations in 3D gels and vice versa in 2D. The opposite effect was evident in differentiating myoblasts as shown by gene expression analysis of myogenesis marker genes and altered myotube morphology. Furthermore, culture in a 3D environment slowed down proliferation compared to 2D, with a significantly more pronounced effect on human myoblasts. Differentiation potential was also substantially impaired upon incorporation into 3D gels in human, but not in murine, myoblasts. With this study, we gained further insight in the influence of apparent elastic modulus and culture type on cellular behavior and myogenic outcome of skeletal muscle tissue engineering approaches. Furthermore, the results highlight the need to adapt parameters of 3D culture setups established for murine cells when applied to human cells.

6.
Redox Biol ; 51: 102251, 2022 05.
Article in English | MEDLINE | ID: mdl-35248827

ABSTRACT

Facioscapulohumeral muscular dystrophy (FSHD) is characterised by descending skeletal muscle weakness and wasting. FSHD is caused by mis-expression of the transcription factor DUX4, which is linked to oxidative stress, a condition especially detrimental to skeletal muscle with its high metabolic activity and energy demands. Oxidative damage characterises FSHD and recent work suggests metabolic dysfunction and perturbed hypoxia signalling as novel pathomechanisms. However, redox biology of FSHD remains poorly understood, and integrating the complex dynamics of DUX4-induced metabolic changes is lacking. Here we pinpoint the kinetic involvement of altered mitochondrial ROS metabolism and impaired mitochondrial function in aetiology of oxidative stress in FSHD. Transcriptomic analysis in FSHD muscle biopsies reveals strong enrichment for pathways involved in mitochondrial complex I assembly, nitrogen metabolism, oxidative stress response and hypoxia signalling. We found elevated mitochondrial ROS (mitoROS) levels correlate with increases in steady-state mitochondrial membrane potential in FSHD myogenic cells. DUX4 triggers mitochondrial membrane polarisation prior to oxidative stress generation and apoptosis through mitoROS, and affects mitochondrial health through lipid peroxidation. We identify complex I as the primary target for DUX4-induced mitochondrial dysfunction, with strong correlation between complex I-linked respiration and cellular oxygenation/hypoxia signalling activity in environmental hypoxia. Thus, FSHD myogenesis is uniquely susceptible to hypoxia-induced oxidative stress as a consequence of metabolic mis-adaptation. Importantly, mitochondria-targeted antioxidants rescue FSHD pathology more effectively than conventional antioxidants, highlighting the central involvement of disturbed mitochondrial ROS metabolism. This work provides a pathomechanistic model by which DUX4-induced changes in oxidative metabolism impair muscle function in FSHD, amplified when metabolic adaptation to varying O2 tension is required.


Subject(s)
Muscular Dystrophy, Facioscapulohumeral , Antioxidants/metabolism , Homeodomain Proteins/metabolism , Humans , Hypoxia/metabolism , Mitochondria/metabolism , Muscle, Skeletal/metabolism , Muscular Dystrophy, Facioscapulohumeral/genetics , Muscular Dystrophy, Facioscapulohumeral/metabolism , Muscular Dystrophy, Facioscapulohumeral/pathology , Oxidative Stress , Reactive Oxygen Species/metabolism
8.
Cancer Gene Ther ; 28(5): 427-441, 2021 05.
Article in English | MEDLINE | ID: mdl-32973362

ABSTRACT

Rhabdomyosarcoma is a rare childhood soft tissue cancer whose cells resemble poorly differentiated skeletal muscle, expressing myogenic proteins including MYOGENIN. Alveolar rhabdomyosarcoma (ARMS) accounts for ~40% of cases and is associated with a poorer prognosis than other rhabdomyosarcoma variants, especially if containing the chromosomal translocation generating the PAX3-FOXO1 hybrid transcription factor. Metastasis is commonly present at diagnosis, with a five-year survival rate of <30%, highlighting the need for novel therapeutic approaches. We designed a suicide gene therapy by generating an ARMS-targeted promoter to drive the herpes simplex virus thymidine kinase (HSV-TK) suicide gene. We modified the minimal human MYOGENIN promoter by deleting both the NF1 and MEF3 transcription factor binding motifs to produce a promoter that is highly active in ARMS cells. Our bespoke ARMS promoter driving HSV-TK efficiently killed ARMS cells in vitro, but not skeletal myoblasts. Using a xenograft mouse model, we also demonstrated that ARMS promoter-HSV-TK causes apoptosis of ARMS cells in vivo. Importantly, combining our suicide gene therapy with standard chemotherapy agents used in the treatment of rhabdomyosarcoma, reduced the effective drug dose, diminishing deleterious side effects/patient burden. This modified, highly ARMS-specific promoter could provide a new therapy option for this difficult-to-treat cancer.


Subject(s)
Gene Expression Regulation, Neoplastic , Genes, Transgenic, Suicide , Genetic Therapy/methods , Myogenin/genetics , Promoter Regions, Genetic , Rhabdomyosarcoma, Alveolar/therapy , Animals , Apoptosis , Cell Proliferation , Female , Humans , Mice , Mice, SCID , Rhabdomyosarcoma, Alveolar/genetics , Rhabdomyosarcoma, Alveolar/pathology , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
9.
J Invest Surg ; 32(7): 646-653, 2019 Nov.
Article in English | MEDLINE | ID: mdl-29561208

ABSTRACT

Purpose: Topical hemostatic agents are an important means of controlling or preventing bleeding. This study was performed to compare gelatin-thrombin matrix with smooth particles (SmGM) versus gelatin-thrombin matrix with stellate particles (StGM) in a porcine kidney bleeding model. Materials and methods: In male pigs, reproducible lesions (diameter and depth ∼10 mm) were created in the renal cortex. Each lesion was treated topically using either SmGM or StGM. Blood loss was quantified before and 2, 5 and 10 minutes after treatment. Dry mass, ultrastructural and histologic analyses were also performed. Results: Thirty-two lesions were treated with SmGM and 32 with StGM; median initial bleeding rates were 27.6 and 29.1 mL/min, respectively. Two minutes post-application, SmGM was associated with significantly less bleeding than StGM (0.574 vs 0.920 mL/min; p < .0001). This difference stemmed principally from lesions with initial blood loss >29 mL/min, where bleeding rates at 2 minutes were ∼3-fold higher with StGM (1.636 vs 0.567 mL/min; p ≥ 0.040). Dry mass per unit volume of hemostatic agent was significantly higher with SmGM versus StGM. SmGM formed discrete, smooth particles, while StGM particles were stellate and tended to coalesce. Histologic analysis showed more solid mass, larger particles and less intervening space with SmGM versus StGM. Conclusions: In a severe, high-volume bleeding model, residual bleeding at 2 minutes was significantly lower with SmGM versus StGM, and SmGM showed greater consistency across bleeding intensities. These findings may be attributable to dry mass per unit volume and/or ultrastructural differences between the two agents.


Subject(s)
Blood Loss, Surgical/prevention & control , Gelatin Sponge, Absorbable/administration & dosage , Hemostasis, Surgical/methods , Kidney/surgery , Thrombin/administration & dosage , Animals , Disease Models, Animal , Humans , Male , Swine , Treatment Outcome
10.
PLoS One ; 13(12): e0209269, 2018.
Article in English | MEDLINE | ID: mdl-30557395

ABSTRACT

Decellularization of native blood vessels is a promising technology to generate 3D biological scaffolds for vascular grafting. Blood vessel decellularization has been performed in previous studies under various experimental conditions, that complicates comparison and optimization of suitable protocols. The goal of this work was to systematically compare the decellularization and recellularization efficacy of 5 different protocols utilizing the detergents sodium dodecyl sulfate (SDS), sodium deoxycholate (SDC), CHAPS and TritonX-100 together with DNA-removing enzymes on porcine vena cava in a perfusion bioreactor setup. Additionally, we tested the effect of DNase on the extracellular matrix (ECM) properties. We found that all protocols could efficiently decellularize blood vessels. Mechanical strength, collagen preservation and ECM integrity were similar among all tested detergents, yet TritonX protocols required long-term DNase application for complete decellularization. However, TritonX-based protocols showed the greatest recellularization efficacy with HUVECs in vitro. Furthermore, we developed a novel protocol for TritonX which improved recellularization and reduced total process time and ECM stiffness compared to previous protocols. SDS, SDC and CHAPS based protocols had a lower recellularization potential. In conclusion, decellularization of blood vessels can be achieved with all tested reagents, but TritonX treated ECM can be most efficiently recellularized with endothelial cells.


Subject(s)
Blood Vessels/cytology , Tissue Engineering/methods , Animals , Biomechanical Phenomena , Bioreactors , Blood Vessels/drug effects , Blood Vessels/physiology , Cell Survival/drug effects , Collagen/drug effects , Collagen/metabolism , Detergents/pharmacology , Endothelial Cells/cytology , Endothelial Cells/drug effects , Endothelial Cells/physiology , Extracellular Matrix/drug effects , Extracellular Matrix/metabolism , Human Umbilical Vein Endothelial Cells , Humans , Sus scrofa
11.
Expert Rev Med Devices ; 15(10): 747-755, 2018 10.
Article in English | MEDLINE | ID: mdl-30295541

ABSTRACT

INTRODUCTION: Wound leakage is a common complication after surgical incision or resection. In the past, a variety of clinically-approved surgical sealant devices have been used as an adjunct or alternative to conventional means of tissue sealing. However, there is still an unmet need for a sealant that can be universally applied over a wide range of clinical applications. This has further driven the emergence of both novel liquid surgical sealant devices and active hemostatic sealant patches to deal with the increasing complexity of surgical interventions in the field of hemorrhage control and wound leakage. AREAS COVERED: Emphasizing the literature from the past 5 years, this review covers the current offering of natural, synthetic or composite surgical sealant devices in liquid or patch form, their appropriate clinical indications as well as emerging technologies, strategies and products. EXPERT COMMENTARY: Recent years have been marked by dramatic and continuous progress towards the development of novel surgical sealant devices and their rigorous clinical testing. In addition, next-generation sealant formulations such as active hemostatic sealant patches and bio-inspired or nanoparticle-based sealant concepts have been developed and are constantly being evaluated and refined.


Subject(s)
Surgical Instruments/trends , Hemostasis/drug effects , Hemostasis, Surgical , Hemostatics/pharmacology , Humans , Treatment Outcome
12.
Front Physiol ; 9: 1130, 2018.
Article in English | MEDLINE | ID: mdl-30246791

ABSTRACT

Classical approaches to engineer skeletal muscle tissue based on current regenerative and surgical procedures still do not meet the desired outcome for patient applications. Besides the evident need to create functional skeletal muscle tissue for the repair of volumetric muscle defects, there is also growing demand for platforms to study muscle-related diseases, such as muscular dystrophies or sarcopenia. Currently, numerous studies exist that have employed a variety of biomaterials, cell types and strategies for maturation of skeletal muscle tissue in 2D and 3D environments. However, researchers are just at the beginning of understanding the impact of different culture settings and their biochemical (growth factors and chemical changes) and biophysical cues (mechanical properties) on myogenesis. With this review we intend to emphasize the need for new in vitro skeletal muscle (disease) models to better recapitulate important structural and functional aspects of muscle development. We highlight the importance of choosing appropriate system components, e.g., cell and biomaterial type, structural and mechanical matrix properties or culture format, and how understanding their interplay will enable researchers to create optimized platforms to investigate myogenesis in healthy and diseased tissue. Thus, we aim to deliver guidelines for experimental designs to allow estimation of the potential influence of the selected skeletal muscle tissue engineering setup on the myogenic outcome prior to their implementation. Moreover, we offer a workflow to facilitate identifying and selecting different analytical tools to demonstrate the successful creation of functional skeletal muscle tissue. Ultimately, a refinement of existing strategies will lead to further progression in understanding important aspects of muscle diseases, muscle aging and muscle regeneration to improve quality of life of patients and enable the establishment of new treatment options.

13.
Tissue Eng Part C Methods ; 23(1): 1-11, 2017 01.
Article in English | MEDLINE | ID: mdl-27901409

ABSTRACT

Monitoring of cell differentiation is a crucial aspect of cell-based therapeutic strategies depending on tissue maturation. In this study, we have developed a noninvasive reporter system to trace murine skeletal muscle differentiation. Either a secreted bioluminescent reporter (Metridia luciferase) or a fluorescent reporter (green fluorescent protein [GFP]) was placed under the control of the truncated muscle creatine kinase (MCK) basal promoter enhanced by variable numbers of upstream MCK E-boxes. The engineered pE3MCK vector, coding a triple tandem of E-Boxes and the truncated MCK promoter, showed twentyfold higher levels of luciferase activation compared with a Cytomegalovirus (CMV) promoter. This newly developed reporter system allowed noninvasive monitoring of myogenic differentiation in a straining bioreactor. Additionally, binding sequences of endogenous microRNAs (miRNAs; seed sequences) that are known to be downregulated in myogenesis were ligated as complementary seed sequences into the reporter vector to reduce nonspecific signal background. The insertion of seed sequences improved the signal-to-noise ratio up to 25% compared with pE3MCK. Due to the highly specific, fast, and convenient expression analysis for cells undergoing myogenic differentiation, this reporter system provides a powerful tool for application in skeletal muscle tissue engineering.


Subject(s)
Cell Differentiation , Creatine Kinase/metabolism , Green Fluorescent Proteins/metabolism , Microscopy, Fluorescence/methods , Muscle Development/physiology , Muscle, Skeletal/cytology , Animals , Cells, Cultured , Creatine Kinase/genetics , Enhancer Elements, Genetic , Green Fluorescent Proteins/genetics , In Vitro Techniques , Mice , Muscle, Skeletal/metabolism , Promoter Regions, Genetic , Signal-To-Noise Ratio
14.
Acta Biomater ; 38: 23-32, 2016 07 01.
Article in English | MEDLINE | ID: mdl-27134013

ABSTRACT

UNLABELLED: To strengthen the mechanical properties of a fibrin gel and improve its applicability as a scaffold for tissue engineering (TE) applications, a strategy for the in situ preparation of the interpenetrating network (IPN) of fibrin and hyaluronic acid (HA) was developed on the basis of simultaneous and orthogonal fibrinogenesis and disulfide cross-linking. The synthetic pathway included the preparation of mutually reactive HA derivatives bearing thiol and 2-dithiopyridyl groups. Combining thiol-derivatized HA with thrombin and 2-dithiopyridyl-modified HA with fibrinogen and then mixing the obtained liquid formulations afforded IPNs with fibrin-resembling fibrillar architectures at different ratios between fibrin and HA networks. The formation of two networks was confirmed by conducting reference experiments with the compositions lacking one of the four components. The composition of 2% (w/v) fibrin and 1% (w/v) HA showed the highest storage modulus (G'), as compared with the single network counterparts. The degradation of fibrin in IPN hydrogels was slower than that in pure fibrin gels both during incubation of the hydrogels in a fibrin-cleaving nattokinase solution and during the culturing of cells after their encapsulation in the hydrogels. Together with the persistence of HA network, it permitted longer cell culturing time in the IPN. Moreover, the proliferation and spreading of MG63 cells that express the hyaluronan receptor CD44 in IPN hydrogel was increased, as compared with its single network analogues. These results are promising for tunable ECM-based materials for TE and regenerative medicine. STATEMENT OF SIGNIFICANCE: The present work is devoted to in situ fabrication of injectable extracellular matrix hydrogels through simultaneous generation of networks of fibrin and hyaluronic acid (HA) that interpenetrate each other. This is accomplished by combination of enzymatic fibrin cross-linking with orthogonal disulphide cross-linking of HA. High hydrophilicity of HA prevents compaction of the fibrin network, while fibrin provides an adhesive environment for in situ encapsulated cells. The interpenetrating network hydrogel shows an increased stiffness along with a lower degradation rate of fibrin in comparison to the single fibrin network. As a result, the cells have sufficient time for the remodelling of the scaffold. This new approach can be applied for modular construction of in vitro tissue models and tissue engineering scaffolds in vivo.


Subject(s)
Cell Proliferation , Fibrin/chemistry , Hyaluronan Receptors/biosynthesis , Hyaluronic Acid/chemistry , Hydrogels/chemistry , Materials Testing , Cell Line, Tumor , Cross-Linking Reagents/chemistry , Extracellular Matrix/chemistry , Humans , Hyaluronic Acid/chemical synthesis , Hydrogels/chemical synthesis
15.
Biol Open ; 5(2): 140-53, 2016 Jan 19.
Article in English | MEDLINE | ID: mdl-26787680

ABSTRACT

The transcription factor Nkx2.5 and the intermediate filament protein desmin are simultaneously expressed in cardiac progenitor cells during commitment of primitive mesoderm to the cardiomyogenic lineage. Up-regulation of Nkx2.5 expression by desmin suggests that desmin may contribute to cardiogenic commitment and myocardial differentiation by directly influencing the transcription of the nkx2.5 gene in cardiac progenitor cells. Here, we demonstrate that desmin activates transcription of nkx2.5 reporter genes, rescues nkx2.5 haploinsufficiency in cardiac progenitor cells, and is responsible for the proper expression of Nkx2.5 in adult cardiac side population stem cells. These effects are consistent with the temporary presence of desmin in the nuclei of differentiating cardiac progenitor cells and its physical interaction with transcription factor complexes bound to the enhancer and promoter elements of the nkx2.5 gene. These findings introduce desmin as a newly discovered and unexpected player in the regulatory network guiding cardiomyogenesis in cardiac stem cells.

16.
Acta Biomater ; 24: 251-65, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26141153

ABSTRACT

The generation of functional biomimetic skeletal muscle constructs is still one of the fundamental challenges in skeletal muscle tissue engineering. With the notion that structure strongly dictates functional capabilities, a myriad of cell types, scaffold materials and stimulation strategies have been combined. To further optimize muscle engineered constructs, we have developed a novel bioreactor system (MagneTissue) for rapid engineering of skeletal muscle-like constructs with the aim to resemble native muscle in terms of structure, gene expression profile and maturity. Myoblasts embedded in fibrin, a natural hydrogel that serves as extracellular matrix, are subjected to mechanical stimulation via magnetic force transmission. We identify static mechanical strain as a trigger for cellular alignment concomitant with the orientation of the scaffold into highly organized fibrin fibrils. This ultimately yields myotubes with a more mature phenotype in terms of sarcomeric patterning, diameter and length. On the molecular level, a faster progression of the myogenic gene expression program is evident as myogenic determination markers MyoD and Myogenin as well as the Ca(2+) dependent contractile structural marker TnnT1 are significantly upregulated when strain is applied. The major advantage of the MagneTissue bioreactor system is that the generated tension is not exclusively relying on the strain generated by the cells themselves in response to scaffold anchoring but its ability to subject the constructs to individually adjustable strain protocols. In future work, this will allow applying mechanical stimulation with different strain regimes in the maturation process of tissue engineered constructs and elucidating the role of mechanotransduction in myogenesis. STATEMENT OF SIGNIFICANCE: Mechanical stimulation of tissue engineered skeletal muscle constructs is a promising approach to increase tissue functionality. We have developed a novel bioreactor-based 3D culture system, giving the user the possibility to apply different strain regimes like static, cyclic or ramp strain to myogenic precursor cells embedded in a fibrin scaffold. Application of static mechanical strain leads to alignment of fibrin fibrils along the axis of strain and concomitantly to highly aligned myotube formation. Additionally, the pattern of myogenic gene expression follows the temporal progression observed in vivo with a more thorough induction of the myogenic program when static strain is applied. Ultimately, the strain protocol used in this study results in a higher degree of muscle maturity demonstrated by enhanced sarcomeric patterning and increased myotube diameter and length. The introduced bioreactor system enables new possibilities in muscle tissue engineering as longer cultivation periods and different strain applications will yield tissue engineered muscle-like constructs with improved characteristics in regard to functionality and biomimicry.


Subject(s)
Bioreactors , Extracellular Matrix/chemistry , Fibrin/chemistry , Hydrogels/chemistry , Muscle, Skeletal/metabolism , Stress, Mechanical , Animals , Antigens, Differentiation/biosynthesis , Cell Line , Mice , Muscle Proteins/biosynthesis , Muscle, Skeletal/cytology
17.
Cytotherapy ; 16(12): 1666-78, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25174738

ABSTRACT

BACKGROUND AIMS: Adipose-derived progenitor/stem cells (ASCs) are discussed as a promising candidate for various tissue engineering approaches. However, its applicability for the clinic is still difficult due to intra- and inter-donor heterogeneity and limited life span in vitro, influencing differentiation capacity as a consequence to decreased multipotency. METHODS: Extracorporeal shock wave treatment has been proven to be a suitable clinical tool to improve regeneration of a variety of tissues for several decades, whereas the mechanisms underlying these beneficial effects remain widely unknown. RESULTS: In this study we show that human and rat adipose derived stem cells respond strongly to repetitive shock wave treatment in vitro, resulting not only in maintenance and significant elevation of mesenchymal markers (CD73, CD90, CD105), but also in significantly increased differentiation capacity towards the osteogenic and adipogenic lineage as well as toward Schwann-cell like cells even after extended time in vitro, preserving multipotency of ASCs. CONCLUSIONS: ESWT might be a promising tool to improve ASC quality for cell therapy in various tissue engineering and regenerative medicine applications.


Subject(s)
Antigens, Differentiation/biosynthesis , Gene Expression Regulation , High-Energy Shock Waves , Multipotent Stem Cells/metabolism , Adult , Animals , Cell- and Tissue-Based Therapy/methods , Cells, Cultured , Female , Humans , Male , Multipotent Stem Cells/cytology , Rats , Rats, Sprague-Dawley
18.
Cell Physiol Biochem ; 33(1): 205-21, 2014.
Article in English | MEDLINE | ID: mdl-24481283

ABSTRACT

BACKGROUND/AIMS: Cell transplantation into the heart is a new therapy after myocardial infarction. Its success, however, is impeded by poor donor cell survival and by limited transdifferentiation of the transplanted cells into functional cardiomyocytes. A promising strategy to overcome these problems is the induction of cardiomyogenic properties in donor cells by small molecules. METHODS: Here we studied cardiomyogenic effects of the small molecule compound cardiogenol C (CgC), and structural derivatives thereof, on lineage-committed progenitor cells by various molecular biological, biochemical, and functional assays. RESULTS: Treatment with CgC up-regulated cardiac marker expression in skeletal myoblasts. Importantly, the compound also induced cardiac functional properties: first, cardiac-like sodium currents in skeletal myoblasts, and secondly, spontaneous contractions in cardiovascular progenitor cell-derived cardiac bodies. CONCLUSION: CgC induces cardiomyogenic function in lineage-committed progenitor cells, and can thus be considered a promising tool to improve cardiac repair by cell therapy.


Subject(s)
Aniline Compounds/pharmacology , Biomarkers/metabolism , Cell Lineage/drug effects , Myocardium/metabolism , Pyrimidines/pharmacology , Small Molecule Libraries/pharmacology , Up-Regulation/drug effects , Aniline Compounds/chemistry , Animals , Atrial Natriuretic Factor/metabolism , Cell Differentiation/drug effects , Cell Line, Tumor , Homeobox Protein Nkx-2.5 , Homeodomain Proteins/metabolism , Humans , Ion Channel Gating/drug effects , Mice , Myoblasts, Skeletal/drug effects , Myoblasts, Skeletal/metabolism , Myocytes, Cardiac/cytology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Pyrimidines/chemistry , Rats , Small Molecule Libraries/chemistry , Stem Cells , Transcription Factors/metabolism
19.
Cells Tissues Organs ; 197(4): 249-68, 2013.
Article in English | MEDLINE | ID: mdl-23343517

ABSTRACT

Compelling evidence for the existence of somatic stem cells in the heart of different mammalian species has been provided by numerous groups; however, so far it has not been possible to maintain these cells as self-renewing and phenotypically stable clonal cell lines in vitro. Thus, we sought to identify a surrogate stem cell niche for the isolation and persistent maintenance of stable clonal cardiovascular progenitor cell lines, enabling us to study the mechanism of self-renewal and differentiation in these cells. Using postnatal murine hearts with a selectable marker as the stem cell source and embryonic stem cells and leukemia inhibitory factor (LIF)-secreting fibroblasts as a surrogate niche, we succeeded in the isolation of stable clonal cardiovascular progenitor cell lines. These cell lines self-renew in an LIF-dependent manner. They express both stemness transcription factors Oct4, Sox2, and Nanog and early myocardial transcription factors Nkx2.5, GATA4, and Isl-1 at the same time. Upon LIF deprivation, they exclusively differentiate to functional cardiomyocytes and endothelial and smooth muscle cells, suggesting that these cells are mesodermal intermediates already committed to the cardiogenic lineage. Cardiovascular progenitor cell lines can be maintained for at least 149 passages over 7 years without phenotypic changes, in the presence of LIF-secreting fibroblasts. Isolation of wild-type cardiovascular progenitor cell lines from adolescent and old mice has finally demonstrated the general feasibility of this strategy for the isolation of phenotypically stable somatic stem cell lines.


Subject(s)
Embryonic Stem Cells/cytology , Leukemia Inhibitory Factor/metabolism , Myocytes, Cardiac/cytology , Animals , Cell Differentiation/physiology , Cell Line , Cytological Techniques/methods , Embryo, Mammalian , Embryonic Stem Cells/metabolism , Endothelial Cells/cytology , Endothelial Cells/metabolism , Female , Fibroblasts/cytology , Fibroblasts/metabolism , Humans , Male , Mice , Mice, Inbred C57BL , Microscopy, Confocal/methods , Myocytes, Cardiac/metabolism
20.
Medchemcomm ; 4(8): 1189-1195, 2013 Aug 01.
Article in English | MEDLINE | ID: mdl-25045463

ABSTRACT

Intra-cardiac cell transplantation is a new therapy after myocardial infarction. Its success, however, is impeded by the limited capacity of donor cells to differentiate into functional cardiomyocytes in the heart. A strategy to overcome this problem is the induction of cardiomyogenic function in cells prior to transplantation. Among other approaches, recently, synthetic small molecules were identified, which promote differentiation of stem cells of various origins into cardiac-like cells or cardiomyocytes. The aim of this study was to develop and characterise new promising cardiomyogenic synthetic low-molecular weight compounds. Therefore, the structure of the known cardiomyogenic molecule cardiogenol C was selectively modified, and the effects of the resulting compounds were tested on various cell types. From this study, VUT-MK142 was identified as the most promising candidate with respect to cardiomyogenic activity. Treatment using this novel agent induced the strongest up-regulation of expression of the cardiac marker ANF in both P19 embryonic carcinoma cells and C2C12 skeletal myoblasts. The activity of VUT-MK142 on this marker superseded CgC; moreover, the novel compound significantly up-regulated the expression of other cardiac markers, and promoted the development of beating cardiomyocytes from cardiovascular progenitor cells. We conclude that VUT-MK142 is a potent new cardiomyogenic synthetic agent promoting the differentiation of pre-cardiac mesoderm into cardiomyocytes, which may be useful to differentiate stem cells into cardiomyocytes for cardiac repair. Additionally, an efficient synthesis of VUT-MK142 is reported taking advantage of continuous flow techniques superior to classical batch reactions both in yield and reaction time.

SELECTION OF CITATIONS
SEARCH DETAIL
...