Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Adolesc Health ; 72(6): 933-942, 2023 06.
Article in English | MEDLINE | ID: mdl-36872118

ABSTRACT

PURPOSE: Sleep plays an important role in healthy neurocognitive development, and poor sleep is linked to cognitive and emotional dysfunction. Studies in adults suggest that shorter sleep duration and poor sleep quality may disrupt core neurocognitive networks, particularly the default mode network (DMN)-a network implicated in internal cognitive processing and rumination. Here, we examine the relationships between sleep and within- and between-network resting-state functional connectivity (rs-FC) of the DMN in youth. METHODS: This study included 3,798 youth (11.9 ± 0.6 years, 47.5% female) from the Adolescent Brain Cognitive Development cohort. Sleep duration and wake after sleep onset (WASO) were quantified using Fitbit watch recordings, and parent-reported sleep disturbances were measured using the Sleep Disturbance Scale for Children. We focused on rs-FC between the DMN and anticorrelated networks (i.e., dorsal attention network [DAN], frontoparietal network, salience network). RESULTS: Both shorter sleep duration and greater sleep disturbances were associated with weaker within-network DMN rs-FC. Shorter sleep duration was also associated with weaker anticorrelation (i.e., higher rs-FC) between the DMN and two anticorrelated networks: the DAN and frontoparietal network. Greater WASO was also associated with DMN-DAN rs-FC, and the effects of WASO on rs-FC were most pronounced among children who slept fewer hours/night. DISCUSSION: Together, these data suggest that different aspects of sleep are associated with distinct and interactive alterations in resting-state brain networks. Alterations in core neurocognitive networks may confer increased risk for emotional psychopathology and attention-related vulnerabilities. Our findings contribute to the growing number of studies demonstrating the importance of healthy sleep practices in youth.


Subject(s)
Brain Mapping , Sleep Initiation and Maintenance Disorders , Adult , Child , Humans , Female , Adolescent , Male , Sleep Quality , Sleep Duration , Default Mode Network , Brain , Sleep , Magnetic Resonance Imaging
2.
Pediatr Blood Cancer ; 69(10): e29917, 2022 10.
Article in English | MEDLINE | ID: mdl-35927934

ABSTRACT

BACKGROUND: Mounting evidence demonstrates that meditation can lower pain and emotional distress in adults, and more recently, in children. Children may benefit from meditation given its accessibility across a variety of settings (e.g., surgical preparation). Recent neuroimaging studies in adults suggest that meditation techniques are neurobiologically distinct from other forms of emotion regulation, such as distraction, that rely on prefrontal control mechanisms, which are underdeveloped in youth. Rather, meditation techniques may not rely on "top-down" prefrontal control and may therefore be utilized across the lifespan. PROCEDURE: We examined neural activation in children with cancer, a potentially distressing diagnosis. During neuroimaging, children viewed distress-inducing video clips while using martial arts-based meditation (focused attention, mindful acceptance) or non-meditation (distraction) emotion regulation techniques. In a third condition (control), participants passively viewed the video clip. RESULTS: We found that meditation techniques were associated with lower activation in default mode network (DMN) regions, including the medial frontal cortex, precuneus, and posterior cingulate cortex, compared to the control condition. Additionally, we found evidence that meditation techniques may be more effective for modulating DMN activity than distraction. There were no differences in self-reported distress ratings between conditions. CONCLUSION: Together, these findings suggest that martial arts-based meditation modulates negative self-referential processing associated with the DMN, and may have implications for the management of pediatric pain and negative emotion.


Subject(s)
Brain Mapping , Neoplasms , Adolescent , Adult , Brain/diagnostic imaging , Brain Mapping/methods , Child , Default Mode Network , Humans , Magnetic Resonance Imaging , Neoplasms/therapy , Pain , Survivors
3.
Behav Brain Res ; 398: 112958, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33069739

ABSTRACT

Exposure to childhood trauma is extremely common (>60 %) and is a leading risk factor for fear-based disorders, including anxiety and posttraumatic stress disorder. These disorders are characterized by deficits in fear extinction and dysfunction in underlying neural circuitry. Given the strong and pervasive link between childhood trauma and the development of psychopathology, fear extinction may be a key mechanism. The present study tests the impact of childhood trauma exposure on fear extinction and underlying neural circuitry. Children (N = 44, 45 % trauma-exposed; 6-11 yrs) completed a novel two-day virtual reality fear extinction experiment. On day one, participants underwent fear conditioning and extinction. Twenty-four hours later, participants completed a test of extinction recall during fMRI. Conditioned fear was measured throughout the experiment using skin conductance and fear-related behavior, and activation in fear-related brain regions was estimated during recall. There were no group differences in conditioned fear during fear conditioning or extinction learning. During extinction recall, however, trauma-exposed children kept more distance from both the previously extinguished and the safety cue, suggesting poor differentiation between threat and safety cues. Trauma-exposed youth also failed to approach the previously extinguished cue over the course of extinction recall. The effects on fear-related behavior during extinction recall were accompanied by higher activation to the previously extinguished cue in fear-relevant brain regions, including the dorsal anterior cingulate cortex and anterior insula, in trauma-exposed relative to control children. Alterations in fear-related brain regions and fear-related behavior may be a core mechanism through which childhood trauma confers heightened vulnerability to psychopathology.


Subject(s)
Adverse Childhood Experiences , Cerebral Cortex/physiopathology , Child Behavior/physiology , Conditioning, Classical/physiology , Extinction, Psychological/physiology , Fear/physiology , Psychological Trauma/physiopathology , Cerebral Cortex/diagnostic imaging , Child , Female , Gyrus Cinguli/diagnostic imaging , Gyrus Cinguli/physiopathology , Humans , Magnetic Resonance Imaging , Male , Virtual Reality
4.
Article in English | MEDLINE | ID: mdl-31511841

ABSTRACT

INTRODUCTION: Adequate sleep is essential for cognitive and emotion-related functioning, and 9 to 12 hr of sleep is recommended for children ages 6 to 12 years and 8 to 10 hr for children ages 13 to 18 years. However, national survey data indicate that older youth sleep for fewer hours and fall asleep later than younger youth. This shift in sleep duration and timing corresponds with a sharp increase in onset of emotion-related problems (e.g., anxiety, depression) during adolescence. Given that both sleep duration and timing have been linked to emotion-related outcomes, the present study tests the effects of sleep duration and timing, and their interaction, on resting-state functional connectivity (RS-FC) of corticolimbic emotion-related neural circuitry in children and adolescents. METHODS: A total of 63 children and adolescents (6-17 years, 34 females) completed a weekend overnight sleep journal and a 10-min resting-state functional magnetic resonance imaging scan the next day (Sunday). Whole-brain RS-FC of the amygdala was computed, and the effects of sleep duration, timing (i.e., midpoint of sleep), and their interaction were explored using regression analyses. RESULTS: Overall, we found that older youth tended to sleep later and for fewer hours than younger youth. Controlling for age, shorter sleep duration was associated with lower RS-FC between the amygdala and regions implicated in emotion regulation, including ventral anterior cingulate cortex, precentral gyrus, and superior temporal gyrus. Interestingly, midpoint of sleep was associated with altered connectivity in a distinct set of brain regions involved in interoception and sensory processing, including insula, supramarginal gyrus, and postcentral gyrus. Our data also indicate widespread interactive effects of sleep duration and midpoint on brain regions implicated in emotion regulation, sensory processing, and motor control. CONCLUSION: These results suggest that both sleep duration and midpoint of sleep are associated with next-day RS-FC within corticolimbic emotion-related neural circuitry in children and adolescents. The observed interactive effects of sleep duration and timing on RS-FC may reflect how homeostatic and circadian process interact in the brain and explain the complex patterns observed with respect to emotional health when considering sleep duration and timing. Sleep-related changes in corticolimbic circuitry may contribute to the onset of emotion-related problems during adolescence.

5.
Neurobiol Learn Mem ; 156: 86-95, 2018 12.
Article in English | MEDLINE | ID: mdl-30347237

ABSTRACT

BACKGROUND: In healthy adults, successful between-session recall of extinction learning depends on the hippocampus and ventromedial prefrontal cortex (vmPFC), especially when tested in the extinction context. Poor extinction recall and dysfunction within hippocampal-vmPFC circuitry are associated with fear-based disorders (e.g., anxiety, posttraumatic stress disorder). Despite the early age of onset of virtually all fear-based disorders and the protracted development of the hippocampus and vmPFC across the first two decades of life, little is known about extinction recall and the underlying neural correlates in children. METHODS: Here, we tested extinction recall in 43 pre-adolescent children (ages 6-11 yrs) by coupling functional magnetic resonance imaging and virtual reality with a novel interpersonal threat-related two-day (ABBA) fear-extinction paradigm. Conditioned fear responding was assessed at behavioral, subjective, physiological, and neural levels. RESULTS: Although children demonstrated intact within-session extinction, there was poor between-session recall of extinction learning (retention index: 13.56%), evidenced by elevations in skin conductance, avoidant behavioral responses, and subjective ratings. Elevations in conditioning fear responding were accompanied by activation in the hippocampus and insula, and increased connectivity of the hippocampus with the insula and dorsal anterior cingulate cortex - regions implicated in the return of fear in adult studies. Children who kept more distance from the extinguished cue during extinction subsequently demonstrated heightened hippocampal-cingulate coupling during recall, suggesting that avoidant behavior interferes with extinction retention. CONCLUSIONS: Poor extinction recall in children may have implications for developmental vulnerability to fear-based disorders, and for the application of therapeutic strategies that rely on principles of extinction (e.g., exposure therapy) to pediatric samples.


Subject(s)
Brain Mapping/methods , Child Development/physiology , Extinction, Psychological/physiology , Galvanic Skin Response/physiology , Gyrus Cinguli/physiology , Hippocampus/physiology , Mental Recall/physiology , Prefrontal Cortex/physiology , Child , Conditioning, Classical/physiology , Fear/physiology , Female , Gyrus Cinguli/diagnostic imaging , Hippocampus/diagnostic imaging , Humans , Magnetic Resonance Imaging , Male , Prefrontal Cortex/diagnostic imaging , Virtual Reality
6.
Sci Rep ; 7(1): 16840, 2017 12 04.
Article in English | MEDLINE | ID: mdl-29203805

ABSTRACT

Disruptions in fear-extinction learning are centrally implicated in a range of stress-related disorders, including anxiety and posttraumatic stress disorder. Given that these disorders frequently begin in childhood/adolescence, an understanding of fear-extinction learning in children is essential for (1) detecting the source of developmental susceptibility, (2) identifying mechanisms leading to pathology, and (3) informing the development and/or more judicious application of treatments for youth. Here, we offer and validate a novel virtual reality paradigm to study threat-related learning and extinction in children that models real-world cues, environments, and fear-inducing events that children are likely to experience, and are linked to the development of fear- and stress-related pathologies. We found that our paradigm is well tolerated in children as young as 6 years, that children show intact fear and extinction learning, and show evidence of divergence in subjective, physiological, and behavioral measures of conditioned fear. The paradigm is available for use in 3-D and in 2-D (e.g., for the MRI scanner) upon request at www.tnp2lab.org .


Subject(s)
Extinction, Psychological , Fear/physiology , Virtual Reality , Child , Female , Galvanic Skin Response/physiology , Humans , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...