Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Am Chem Soc ; 145(34): 18968-18976, 2023 08 30.
Article in English | MEDLINE | ID: mdl-37596976

ABSTRACT

We report the development of a self-renewable tag (srTAG) for protein fluorescence imaging. srTAG leverages the "on-protein" fluorophore equilibrium between the fluorescent zwitterion and non-fluorescent spirocyclic form and the reversible fluorescence labeling to enable self-recovery of fluorescence after photobleaching. This small-sized srTAG allows 2-6 times longer imaging duration compared to other commonly used self-labeling tags and is compatible with fluorophores with different spectral properties. This study provides a new strategy for fine tuning of self-labeling tags.


Subject(s)
Fluorescent Dyes , Optical Imaging , Ionophores , Photobleaching
2.
Nat Commun ; 9(1): 4259, 2018 10 15.
Article in English | MEDLINE | ID: mdl-30323235

ABSTRACT

Phagocytosis is one of the earliest cellular functions, developing approximately 2 billion years ago. Although FcR-based phagocytic signaling is well-studied, how it originated from ancient phagocytosis is unknown. Lipid redistribution upregulates a phagocytic program recapitulating FcR-based phagocytosis with complete dependence on Src family kinases, Syk, and phosphoinositide 3-kinases (PI3K). Here we show that in phagocytes, an atypical ITAM sequence in the ancient membrane anchor protein Moesin transduces signal without receptor activation. Plasma membrane deformation created by solid structure binding generates phosphatidylinositol 4,5-bisphosphate (PIP2) accumulation at the contact site, which binds the Moesin FERM domain and relocalizes Syk to the membrane via the ITAM motif. Phylogenic analysis traces this signaling using PI3K and Syk to 0.8 billion years ago, earlier than immune receptor signaling. The proposed general model of solid structure phagocytosis implies a preexisting lipid redistribution-based activation platform collecting intracellular signaling components for the emergence of immune receptors.


Subject(s)
Phagocytosis , Phosphatidylinositol 4,5-Diphosphate/metabolism , Amino Acid Substitution , Animals , Biological Evolution , Cell Line , Genome , Humans , Immunity , Mice, Inbred C57BL , Microfilament Proteins/metabolism , Models, Biological , Signal Transduction , Syk Kinase
SELECTION OF CITATIONS
SEARCH DETAIL