Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Opt Express ; 25(2): 1542-1554, 2017 Jan 23.
Article in English | MEDLINE | ID: mdl-28158036

ABSTRACT

We demonstrate supercontinuum generation in stoichiometric silicon nitride (Si3N4 in SiO2) integrated optical waveguides, pumped at telecommunication wavelengths. The pump laser is a mode-locked erbium fiber laser at a wavelength of 1.56 µm with a pulse duration of 120 fs. With a waveguide-internal pulse energy of 1.4 nJ and a waveguide with 1.0 µm × 0.9 µm cross section, designed for anomalous dispersion across the 1500 nm telecommunication range, the output spectrum extends from the visible, at around 526 nm, up to the mid-infrared, at least to 2.6 µm, the instrumental limit of our detection. This output spans more than 2.2 octaves (454 THz at the -30 dB level). The measured output spectra agree well with theoretical modeling based on the generalized nonlinear Schrödinger equation. The infrared part of the supercontinuum spectra shifts progressively towards the mid-infrared, well beyond 2.6 µm, by increasing the width of the waveguides.

2.
Biosensors (Basel) ; 6(1)2016 Jan 06.
Article in English | MEDLINE | ID: mdl-26751486

ABSTRACT

In this work, we present a study of Aflatoxin M1 detection by photonic biosensors based on Si3N4 Asymmetric Mach-Zehnder Interferometer (aMZI) functionalized with antibodies fragments (Fab'). We measured a best volumetric sensitivity of 104 rad/RIU, leading to a Limit of Detection below 5 × 10(-7) RIU. On sensors functionalized with Fab', we performed specific and non-specific sensing measurements at various toxin concentrations. Reproducibility of the measurements and re-usability of the sensor were also investigated.


Subject(s)
Aflatoxin M1/isolation & purification , Biosensing Techniques/instrumentation , Silicon Compounds/chemistry , Interferometry , Optical Phenomena , Photons , Reproducibility of Results
3.
Opt Express ; 23(15): 19596-604, 2015 Jul 27.
Article in English | MEDLINE | ID: mdl-26367617

ABSTRACT

We report ultra-broadband supercontinuum generation in high-confinement Si3N4 integrated optical waveguides. The spectrum extends through the visible (from 470 nm) to the infrared spectral range (2130 nm) comprising a spectral bandwidth wider than 495 THz, which is the widest supercontinuum spectrum generated on a chip.

4.
Opt Express ; 23(2): 642-8, 2015 Jan 26.
Article in English | MEDLINE | ID: mdl-25835823

ABSTRACT

In this paper we present a novel fabrication technique for silicon nitride (Si(3)N(4)) waveguides with a thickness of up to 900 nm, which are suitable for nonlinear optical applications. The fabrication method is based on etching trenches in thermally oxidized silicon and filling the trenches with Si(3)N(4). Using this technique no stress-induced cracks in the Si(3)N(4) layer were observed resulting in a high yield of devices on the wafer. The propagation losses of the obtained waveguides were measured to be as low as 0.4 dB/cm at a wavelength of around 1550 nm.

5.
Opt Express ; 22(14): 17079-91, 2014 Jul 14.
Article in English | MEDLINE | ID: mdl-25090522

ABSTRACT

We propose and experimentally demonstrate the working principles of two novel microwave photonic (MWP) beamformer circuits operating with phase modulation (PM) and direct detection (DD). The proposed circuits incorporate two major signal processing functionalities, namely a broadband beamforming network employing ring resonator-based delay lines and an optical sideband manipulator that renders the circuit outputs equivalent to those of intensity-modulated MWP beamformers. These functionalities allow the system to employ low-circuit-complexity modulators and detectors, which brings significant benefits on the system construction cost and operation stability. The functionalities of the proposed MWP beamformer circuits were verified in experimental demonstrations performed on two sample circuits realized in Si(3)N(4)/SiO(2) waveguide technology. The measurements exhibit a 2 × 1 beamforming effect for an instantaneous RF transmission band of 3‒7 GHz, which is, to our best knowledge, the first verification of on-chip MWP beamformer circuits operating with PM and DD.

6.
Opt Express ; 21(19): 22937-61, 2013 Sep 23.
Article in English | MEDLINE | ID: mdl-24104179

ABSTRACT

We present an overview of several microwave photonic processing functionalities based on combinations of Mach-Zehnder and ring resonator filters using the high index contrast silicon nitride (TriPleX™) waveguide technology. All functionalities are built using the same basic building blocks, namely straight waveguides, phase tuning elements and directional couplers. We recall previously shown measurements on high spurious free dynamic range microwave photonic (MWP) link, ultra-wideband pulse generation, instantaneous frequency measurements, Hilbert transformers, microwave polarization networks and demonstrate new measurements and functionalities on a 16 channel optical beamforming network and modulation format transformer as well as an outlook on future microwave photonic platform integration, which will lead to a significantly reduced footprint and thereby enables the path to commercially viable MWP systems.

7.
Opt Express ; 19(24): 24090-101, 2011 Nov 21.
Article in English | MEDLINE | ID: mdl-22109434

ABSTRACT

We demonstrate a wafer-bonded silica-on-silicon planar waveguide platform with record low total propagation loss of (0.045 ± 0.04) dB/m near the free space wavelength of 1580 nm. Using coherent optical frequency domain reflectometry, we characterize the group index, fiber-to-chip coupling loss, critical bend radius, and propagation loss of these waveguides.


Subject(s)
Refractometry/instrumentation , Silicon Dioxide/chemistry , Surface Plasmon Resonance/instrumentation , Equipment Design , Equipment Failure Analysis , Light , Scattering, Radiation
8.
Opt Express ; 19(4): 3163-74, 2011 Feb 14.
Article in English | MEDLINE | ID: mdl-21369138

ABSTRACT

We characterize an approach to make ultra-low-loss waveguides using stable and reproducible stoichiometric Si3N4 deposited with low-pressure chemical vapor deposition. Using a high-aspect-ratio core geometry, record low losses of 8-9 dB/m for a 0.5 mm bend radius down to 3 dB/m for a 2 mm bend radius are measured with ring resonator and optical frequency domain reflectometry techniques. From a waveguide loss model that agrees well with experimental results, we project that 0.1 dB/m total propagation loss is achievable at a 7 mm bend radius with this approach.

9.
Nano Lett ; 7(2): 394-7, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17298006

ABSTRACT

We report the application of an integrated optical Young interferometer sensor for ultrasensitive, real-time, direct detection of viruses. We have validated the sensor by detecting herpes simplex virus type 1 (HSV-1), but the principle is generally applicable. Detection of HSV-1 virus particles was performed by applying the virus sample onto a sensor surface coated with a specific antibody against HSV-1. The performance of the sensor was tested by monitoring virus samples at clinically relevant concentrations. We show that the Young interferometer sensor can specifically and sensitively detect HSV-1 at very low concentrations (850 particles/mL). We have further demonstrated that the sensor can specifically detect HSV-1 suspended in serum. Extrapolation of the results indicates that the sensitivity of the sensor approaches the detection of a single virus particle binding, yielding a sensor of unprecedented sensitivity with wide applications for viral diagnostics.


Subject(s)
Interferometry/methods , Virology/methods , Viruses/isolation & purification , Antibodies, Viral , Blood/virology , Herpesvirus 1, Human/immunology , Herpesvirus 1, Human/isolation & purification , Humans , Interferometry/statistics & numerical data , Nanotechnology/methods , Sensitivity and Specificity , Virology/statistics & numerical data , Viruses/immunology
10.
Appl Opt ; 44(17): 3409-12, 2005 Jun 10.
Article in English | MEDLINE | ID: mdl-16007835

ABSTRACT

We demonstrate that in a sensor based on a multichannel Young interferometer, the phase information obtained for different pairs of channels can be used to correct the long-term instability (drift) due to temperature differences between measuring and reference channels, the drift in the alignment of the setup, etc. Experiments show that the nature of a major part of the drift is such that the drift present in one of the channels can be determined by interpolation of the drift measured in the two adjacent channels. It is shown that a drift reduction of 10 times can be achieved as compared with the situation in which no correction is applied. We anticipate that these findings will permit the exploitation of the extreme sensitivity of interference-based sensors to a much greater extent.

11.
Appl Opt ; 42(28): 5649-60, 2003 Oct 01.
Article in English | MEDLINE | ID: mdl-14528926

ABSTRACT

We report on the design, realization, and characterization of a four-channel integrated optical Young interferometer device that enables simultaneous and independent monitoring of three binding processes. The generated interference pattern is recorded by a CCD camera and analyzed with a fast-Fourier-transform algorithm. We present a thorough theoretical analysis of such a device. The realized device is tested by monitoring glucose solutions that induce well defined phase changes between output channels. The simultaneous measurement of three different glucose concentrations shows the multipurpose feature of such devices. The observed errors, caused by the mismatching of spatial frequencies of individual interference patterns with those determined from the CCD camera, are reduced with different reduction schemes. The phase resolution for different pairs of channels was approximately 1 x 10(-4) fringes, which corresponds to a refractive-index resolution of approximately 8.5 x 10(-8). The measured sensitivity coefficient of the phase change versus refractive-index change of approximately 1.22 x 10(3) x 2pi agrees well with the calculated coefficient of approximately 1.20 x 10(3) x 2pi.


Subject(s)
Interferometry , Signal Processing, Computer-Assisted , Interferometry/instrumentation , Models, Theoretical
SELECTION OF CITATIONS
SEARCH DETAIL
...