Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Physiol Rep ; 11(11): e15739, 2023 06.
Article in English | MEDLINE | ID: mdl-37269183

ABSTRACT

It has been shown that muscle fascicle curvature increases with increasing contraction level and decreasing muscle-tendon complex length. The analyses were done with limited examination windows concerning contraction level, muscle-tendon complex length, and/or intramuscular position of ultrasound imaging. With this study we aimed to investigate the correlation between fascicle arching and contraction, muscle-tendon complex length and their associated architectural parameters in gastrocnemius muscles to develop hypotheses concerning the fundamental mechanism of fascicle curving. Twelve participants were tested in five different positions (90°/105°*, 90°/90°*, 135°/90°*, 170°/90°*, and 170°/75°*; *knee/ankle angle). They performed isometric contractions at four different contraction levels (5%, 25%, 50%, and 75% of maximum voluntary contraction) in each position. Panoramic ultrasound images of gastrocnemius muscles were collected at rest and during constant contraction. Aponeuroses and fascicles were tracked in all ultrasound images and the parameters fascicle curvature, muscle-tendon complex strain, contraction level, pennation angle, fascicle length, fascicle strain, intramuscular position, sex and age group were analyzed by linear mixed effect models. Mean fascicle curvature of the medial gastrocnemius increased with contraction level (+5 m-1 from 0% to 100%; p = 0.006). Muscle-tendon complex length had no significant impact on mean fascicle curvature. Mean pennation angle (2.2 m-1 per 10°; p < 0.001), inverse mean fascicle length (20 m-1 per cm-1 ; p = 0.003), and mean fascicle strain (-0.07 m-1 per +10%; p = 0.004) correlated with mean fascicle curvature. Evidence has also been found for intermuscular, intramuscular, and sex-specific intramuscular differences of fascicle curving. Pennation angle and the inverse fascicle length show the highest predictive capacities for fascicle curving. Due to the strong correlations between pennation angle and fascicle curvature and the intramuscular pattern of curving we suggest for future studies to examine correlations between fascicle curvature and intramuscular fluid pressure.


Subject(s)
Muscle, Skeletal , Tendon Injuries , Male , Female , Humans , Muscle, Skeletal/physiology , Tendons/diagnostic imaging , Tendons/physiology , Ankle/physiology , Ankle Joint/diagnostic imaging , Isometric Contraction/physiology , Ultrasonography/methods , Muscle Contraction/physiology
2.
Med Sci Sports Exerc ; 55(3): 335-341, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36730975

ABSTRACT

PURPOSE: Chronic exposure to hypoxia can induce muscle wasting in unaccustomed individuals. Detailed assessment of the effects of hypoxia on muscle tissue adaptation in elite mountaineers has not been performed. This study aims to assess muscle volume after exposure to normobaric hypoxia. METHODS: Two professional mountaineers (A and B) participated in a 35-d intervention of graded normobaric hypoxia with the aim of 14 d exposure to 8% oxygen corresponding to 7112-m altitude. Volume of the shank, thigh, and hip muscles was assessed by magnetic resonance imaging pre- and postintervention. Dietary intake and physical activity were monitored throughout the study from food images and accelerometry analysis, together with blood analysis and anthropometric measurements. RESULTS: Hypoxia reduced total leg muscle volume by 3.3% ± 6.0% in A and by 9.4% ± 7.3% in B. A lost 288 g and B 642 g of muscle mass, whereas dietary intake only declined by ~23% in the last intervention week. Arterial oxygen saturation declined from 95% and 86% to 77% and 72% in A and B, respectively. In hypoxia, participants could not maintain their physical activity levels. Notably, muscle loss varied substantially across muscle groups amounting to 5.4% ± 3.0%, 8.3% ± 5.2%, and 4.1% ± 8.6% for hip, thigh, and shank muscles, respectively. CONCLUSIONS: Our results indicate that hypoxia and resultant reductions in physical activity and caloric intake lead to substantial loss of muscle mass that was accentuated in proximal muscle as opposed to distal muscles. Surprisingly, thigh muscle wasting during this intervention is comparable with that observed during strict 56-d bed rest.


Subject(s)
Hypoxia , Oxygen , Humans , Altitude , Muscle, Skeletal , Exercise/physiology , Muscular Atrophy
SELECTION OF CITATIONS
SEARCH DETAIL
...