Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cells ; 12(6)2023 03 14.
Article in English | MEDLINE | ID: mdl-36980231

ABSTRACT

BACKGROUND: Filopodia are dynamic, finger-like actin-filament bundles that overcome membrane tension by forces generated through actin polymerization at their tips to allow extension of these structures a few microns beyond the cell periphery. Actin assembly of these protrusions is regulated by accessory proteins including heterodimeric capping protein (CP) or Ena/VASP actin polymerases to either terminate or promote filament growth. Accordingly, the depletion of CP in B16-F1 melanoma cells was previously shown to cause an explosive formation of filopodia. In Ena/VASP-deficient cells, CP depletion appeared to result in ruffling instead of inducing filopodia, implying that Ena/VASP proteins are absolutely essential for filopodia formation. However, this hypothesis was not yet experimentally confirmed. METHODS: Here, we used B16-F1 cells and CRISPR/Cas9 technology to eliminate CP either alone or in combination with Ena/VASP or other factors residing at filopodia tips, followed by quantifications of filopodia length and number. RESULTS: Unexpectedly, we find massive formations of filopodia even in the absence of CP and Ena/VASP proteins. Notably, combined inactivation of Ena/VASP, unconventional myosin-X and the formin FMNL3 was required to markedly impair filopodia formation in CP-deficient cells. CONCLUSIONS: Taken together, our results reveal that, besides Ena/VASP proteins, numerous other factors contribute to filopodia formation.


Subject(s)
Actins , Microfilament Proteins , Actins/metabolism , Microfilament Proteins/metabolism , Actin Cytoskeleton/metabolism , Formins
2.
Proc Natl Acad Sci U S A ; 120(2): e2217437120, 2023 01 10.
Article in English | MEDLINE | ID: mdl-36598940

ABSTRACT

Sheet-like membrane protrusions at the leading edge, termed lamellipodia, drive 2D-cell migration using active actin polymerization. Microspikes comprise actin-filament bundles embedded within lamellipodia, but the molecular mechanisms driving their formation and their potential functional relevance have remained elusive. Microspike formation requires the specific activity of clustered Ena/VASP proteins at their tips to enable processive actin assembly in the presence of capping protein, but the factors and mechanisms mediating Ena/VASP clustering are poorly understood. Systematic analyses of B16-F1 melanoma mutants lacking potential candidate proteins revealed that neither inverse BAR-domain proteins, nor lamellipodin or Abi is essential for clustering, although they differentially contribute to lamellipodial VASP accumulation. In contrast, unconventional myosin-X (MyoX) identified here as proximal to VASP was obligatory for Ena/VASP clustering and microspike formation. Interestingly, and despite the invariable distribution of other relevant marker proteins, the width of lamellipodia in MyoX-KO mutants was significantly reduced as compared with B16-F1 control, suggesting that microspikes contribute to lamellipodium stability. Consistently, MyoX removal caused marked defects in protrusion and random 2D-cell migration. Strikingly, Ena/VASP-deficiency also uncoupled MyoX cluster dynamics from actin assembly in lamellipodia, establishing their tight functional association in microspike formation.


Subject(s)
Actins , Synapsins , Mice , Actins/metabolism , Cell Movement , Myosins/genetics , Myosins/metabolism , Phosphoproteins/metabolism , Pseudopodia/metabolism , Synapsins/metabolism , Animals , Cell Line, Tumor
3.
PLoS One ; 16(8): e0256468, 2021.
Article in English | MEDLINE | ID: mdl-34432846

ABSTRACT

The isoquinolinamine FX-9 is a novel potential chemotherapeutic agent showing antiproliferative effects against hematologic and prostate cancer cell lines such as B- and T-acute lymphoblastic leukemia and prostate cancer (PC) of different species. Interestingly, FX-9 shows no hemolytic activity and low toxicity in benign adherent cells. The detailed FX-9 molecular mode of action is currently not fully understood. But application on neoplastic cells induces pro-apoptotic and antimitotic effects. Canine prostate cancer (cPC) represents a unique spontaneous occurring animal model for human androgen-independent PC. Human androgen-independent PC as well as cPC are currently not satisfactorily treatable with chemotherapeutic protocols. Accordingly, the evaluation of novel agent combinations bears significant potential for identifying novel treatment strategies. In this study, we combined FX-9 with the currently approved therapeutic agents doxorubicin, carboplatin, the demethylating substance azacitidine as well as further potentially antitumorigenic agents such as dichloroacetic acid (DCA) in order to evaluate the respective synergistic potential. The combinations with 1-5 µM FX-9 were evaluated regarding the effect after 72 hours on cell viability, cell count and apoptotic/necrotic cells in two human prostate cancer cell lines (LNCaP, PC-3) and a canine prostate cancer cell line (Adcarc1258) representing androgen-dependent and -independent PC/cPC forms. FX-9 in combination with azacitidine decreases cell viability and increases cell death with positive Bliss values. Furthermore, this decreases the cell count with neutral Bliss values on PC-3. Carboplatin in combination with FX-9 reduces cell viability with a neutral Bliss value and increases cell death on LNCaP with calculated positive Bliss values. DCA or doxorubicin in combination with FX-9 do not show synergistic or additive effects on the cell viability. Based on these results, azacitidine or carboplatin in combination with FX-9 offers synergistic/additive efficacy against prostate adenocarcinoma cell lines in vitro. The beneficial effects of both combinations are worth further investigation.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Azacitidine/therapeutic use , Carboplatin/therapeutic use , Dichloroacetic Acid/therapeutic use , Doxorubicin/therapeutic use , Isoquinolines/therapeutic use , Prostatic Neoplasms/drug therapy , Androgens/pharmacology , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Apoptosis/drug effects , Azacitidine/pharmacology , Carboplatin/pharmacology , Cell Count , Cell Line, Tumor , Cell Survival/drug effects , Dichloroacetic Acid/pharmacology , Doxorubicin/pharmacology , Drug Synergism , Humans , Isoquinolines/pharmacology , Male , Prostatic Neoplasms/pathology
4.
Int J Mol Sci ; 20(22)2019 Nov 07.
Article in English | MEDLINE | ID: mdl-31703454

ABSTRACT

Current therapies are insufficient for metastatic prostate cancer (PCa) in men and dogs. As human castrate-resistant PCa shares several characteristics with the canine disease, comparative evaluation of novel therapeutic agents is of considerable value for both species. Novel isoquinolinamine FX-9 exhibits antiproliferative activity in acute lymphoblastic leukemia cell lines but has not been tested yet on any solid neoplasia type. In this study, FX-9's mediated effects were characterized on two human (PC-3, LNCaP) and two canine (CT1258, 0846) PCa cell lines, as well as benign solid tissue cells. FX-9 significantly inhibited cell viability and induced apoptosis with concentrations in the low micromolar range. Mediated effects were highly comparable between the PCa cell lines of both species, but less pronounced on non-malignant chondrocytes and fibroblasts. Interestingly, FX-9 exposure also leads to the formation and survival of enlarged multinucleated cells through mitotic slippage. Based on the results, FX-9 acts as an anti-mitotic agent with reduced cytotoxic activity in benign cells. The characterization of FX-9-induced effects on PCa cells provides a basis for in vivo studies with the potential of valuable transferable findings to the benefit of men and dogs.


Subject(s)
Antineoplastic Agents , Dog Diseases , Isoquinolines , Mitosis/drug effects , Prostatic Neoplasms , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Dog Diseases/drug therapy , Dog Diseases/metabolism , Dog Diseases/pathology , Dogs , Humans , Isoquinolines/chemistry , Isoquinolines/pharmacology , Male , PC-3 Cells , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Prostatic Neoplasms/veterinary
SELECTION OF CITATIONS
SEARCH DETAIL
...