Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 14(5): e0216400, 2019.
Article in English | MEDLINE | ID: mdl-31063487

ABSTRACT

MicroRNAs (miRNAs) regulate gene expression post-transcriptionally. In this way they might influence whether a cell is sensitive or resistant to a certain drug. So far, only a limited number of relatively small scale studies comprising few cell lines and/or drugs have been performed. To obtain a broader view on miRNAs and their association with drug response, we investigated the expression levels of 411 miRNAs in relation to drug sensitivity in 36 breast cancer cell lines. For this purpose IC50 values of a drug screen involving 34 drugs were associated with miRNA expression data of the same breast cancer cell lines. Since molecular subtype of the breast cancer cell lines is considered a confounding factor in drug association studies, multivariate analysis taking subtype into account was performed on significant miRNA-drug associations which retained 13 associations. These associations consisted of 11 different miRNAs and eight different drugs (among which Paclitaxel, Docetaxel and Veliparib). The taxanes, Paclitaxel and Docetaxel, were the only drugs having miRNAs in common: hsa-miR-187-5p and hsa-miR-106a-3p indicative of drug resistance while Paclitaxel sensitivity alone associated with hsa-miR-556-5p. Tivantinib was associated with hsa-let-7d-5p and hsa-miR-18a-5p for sensitivity and hsa-miR-637 for resistance. Drug sensitivity was associated with hsa-let-7a-5p for Bortezomib, hsa-miR-135a-3p for JNJ-707 and hsa-miR-185-3p for Panobinostat. Drug resistance was associated with hsa-miR-182-5p for Veliparib and hsa-miR-629-5p for Tipifarnib. Pathway analysis for significant miRNAs was performed to reveal biological roles, aiding to find a potential mechanistic link for the observed associations with drug response. By doing so hsa-miR-187-5p was linked to the cell cycle G2-M checkpoint in line with this checkpoint being the target of taxanes. In conclusion, our study shows that miRNAs could potentially serve as biomarkers for intrinsic drug resistance and that pathway analyses can provide additional information in this context.


Subject(s)
Antineoplastic Agents/pharmacology , Biomarkers, Tumor/metabolism , Breast Neoplasms , Drug Resistance, Neoplasm/drug effects , MicroRNAs/metabolism , RNA, Neoplasm/metabolism , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Female , G2 Phase Cell Cycle Checkpoints/drug effects , Humans , M Phase Cell Cycle Checkpoints/drug effects
2.
Springerplus ; 4: 611, 2015.
Article in English | MEDLINE | ID: mdl-26543746

ABSTRACT

With substantial numbers of breast tumors showing or acquiring treatment resistance, it is of utmost importance to develop new agents for the treatment of the disease, to know their effectiveness against breast cancer and to understand their relationships with other drugs to best assign the right drug to the right patient. To achieve this goal drug screenings on breast cancer cell lines are a promising approach. In this study a large-scale drug screening of 37 compounds was performed on a panel of 42 breast cancer cell lines representing the main breast cancer subtypes. Clustering, correlation and pathway analyses were used for data analysis. We found that compounds with a related mechanism of action had correlated IC50 values and thus grouped together when the cell lines were hierarchically clustered based on IC50 values. In total we found six clusters of drugs of which five consisted of drugs with related mode of action and one cluster with two drugs not previously connected. In total, 25 correlated and four anti-correlated drug sensitivities were revealed of which only one drug, Sirolimus, showed significantly lower IC50 values in the luminal/ERBB2 breast cancer subtype. We found expected interactions but also discovered new relationships between drugs which might have implications for cancer treatment regimens.

3.
PLoS One ; 9(9): e103988, 2014.
Article in English | MEDLINE | ID: mdl-25230021

ABSTRACT

Epithelial ovarian cancer is a highly heterogeneous disease and remains the most lethal gynaecological malignancy in the Western world. Therapeutic approaches need to account for inter-patient and intra-tumoural heterogeneity and detailed characterization of in vitro models representing the different histological and molecular ovarian cancer subtypes is critical to enable reliable preclinical testing. There are approximately 100 publicly available ovarian cancer cell lines but their cellular and molecular characteristics are largely undescribed. We have characterized 39 ovarian cancer cell lines under uniform conditions for growth characteristics, mRNA/microRNA expression, exon sequencing, drug response for clinically-relevant therapeutics and collated all available information on the original clinical features and site of origin. We tested for statistical associations between the cellular and molecular features of the lines and clinical features. Of the 39 ovarian cancer cell lines, 14 were assigned as high-grade serous, four serous-type, one low-grade serous and 20 non-serous type. Three morphological subtypes: Epithelial (n = 21), Round (n = 7) and Spindle (n = 12) were identified that showed distinct biological and molecular characteristics, including overexpression of cell movement and migration-associated genes in the Spindle subtype. Comparison with the original clinical data showed association of the spindle-like tumours with metastasis, advanced stage, suboptimal debulking and poor prognosis. In addition, the expression profiles of Spindle, Round and Epithelial morphologies clustered with the previously described C1-stromal, C5-mesenchymal and C4 ovarian subtype expression profiles respectively. Comprehensive profiling of 39 ovarian cancer cell lines under controlled, uniform conditions demonstrates clinically relevant cellular and genomic characteristics. This data provides a rational basis for selecting models to develop specific treatment approaches for histological and molecular subtypes of ovarian cancer.


Subject(s)
MicroRNAs/genetics , Neoplasms, Glandular and Epithelial/pathology , Ovarian Neoplasms/pathology , Carcinoma, Ovarian Epithelial , Female , Gene Expression Regulation, Neoplastic , Humans , Neoplasms, Glandular and Epithelial/metabolism , Ovarian Neoplasms/metabolism
4.
Breast Cancer Res ; 15(2): R33, 2013 Apr 19.
Article in English | MEDLINE | ID: mdl-23601657

ABSTRACT

INTRODUCTION: Breast cancer is a genetically and phenotypically complex disease. To understand the role of miRNAs in this molecular complexity, we performed miRNA expression analysis in a cohort of molecularly well-characterized human breast cancer cell lines to identify miRNAs associated with the most common molecular subtypes and the most frequent genetic aberrations. METHODS: Using a microarray carrying LNA™ modified oligonucleotide capture probes), expression levels of 725 human miRNAs were measured in 51 breast cancer cell lines. Differential miRNA expression was explored by unsupervised cluster analysis and was then associated with the molecular subtypes and genetic aberrations commonly present in breast cancer. RESULTS: Unsupervised cluster analysis using the most variably expressed miRNAs divided the 51 breast cancer cell lines into a major and a minor cluster predominantly mirroring the luminal and basal intrinsic subdivision of breast cancer cell lines. One hundred and thirteen miRNAs were differentially expressed between these two main clusters. Forty miRNAs were differentially expressed between basal-like and normal-like/claudin-low cell lines. Within the luminal-group, 39 miRNAs were associated with ERBB2 overexpression and 24 with E-cadherin gene mutations, which are frequent in this subtype of breast cancer cell lines. In contrast, 31 miRNAs were associated with E-cadherin promoter hypermethylation, which, contrary to E-cadherin mutation, is exclusively observed in breast cancer cell lines that are not of luminal origin. Thirty miRNAs were associated with p16INK4 status while only a few miRNAs were associated with BRCA1, PIK3CA/PTEN and TP53 mutation status. Twelve miRNAs were associated with DNA copy number variation of the respective locus. CONCLUSION: Luminal-basal and epithelial-mesenchymal associated miRNAs determine the subdivision of miRNA transcriptome of breast cancer cell lines. Specific sets of miRNAs were associated with ERBB2 overexpression, p16INK4a or E-cadherin mutation or E-cadherin methylation status, which implies that these miRNAs may contribute to the driver role of these genetic aberrations. Additionally, miRNAs, which are located in a genomic region showing recurrent genetic aberrations, may themselves play a driver role in breast carcinogenesis or contribute to a driver gene in their vicinity. In short, our study provides detailed molecular miRNA portraits of breast cancer cell lines, which can be exploited for functional studies of clinically important miRNAs.


Subject(s)
Breast Neoplasms/classification , Breast Neoplasms/genetics , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , Mutation/genetics , Cadherins/genetics , Chromosome Aberrations , Cyclin-Dependent Kinase Inhibitor p16/genetics , DNA Copy Number Variations , DNA Methylation , Female , Gene Expression Profiling , Humans , Oligonucleotide Array Sequence Analysis , Polymorphism, Single Nucleotide/genetics , Promoter Regions, Genetic/genetics , Receptor, ErbB-2/genetics , Tumor Cells, Cultured
5.
Breast Cancer Res Treat ; 138(1): 47-57, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23338761

ABSTRACT

Epithelial to mesenchymal transition (EMT) is typically defined by the acquisition of a spindle cell morphology in combination with loss of E-cadherin and upregulation of mesenchymal markers. However, by studying E-cadherin inactivation in 38 human breast cancer cell lines, we noted that not all cell lines that had undergone EMT had concomitantly lost E-cadherin expression. We further investigated this discrepancy functionally and in clinical breast cancer specimens. Interestingly, reconstitution of wild-type E-cadherin cDNA in a E-cadherin negative cell line that had undergone EMT (MDA-MB-231) did not revert the spindle morphology back to an epithelial morphology. Neither were changes observed in the expression of several markers known to be involved in the EMT process. Similarly, upregulation of E-cadherin via global DNA demethylation in eleven cell lines that had undergone EMT did not induce a change in cell morphology, nor did it alter the expression of EMT markers in these cells. Next, we extracted genes differentially expressed between cell lines that had undergone EMT versus cell lines that had not undergone EMT. Caveolin-1 was identified to be an excellent marker for EMT, irrespective of E-cadherin status (specificity and sensitivity of 100 %). Consistent with our observations in the breast cancer cell lines, expression of Caveolin-1 identified a subset of basal breast cancers, particularly of metaplastic pathology, and only 50 % of these lacked E-cadherin expression. The discrepancy between E-cadherin loss and EMT was thus reproduced in clinical samples. Together, these results indicate that in human breast cancer loss of E-cadherin is not causal for EMT and even not a necessity.


Subject(s)
Breast Neoplasms/genetics , Cadherins/genetics , Epithelial-Mesenchymal Transition/genetics , Breast Neoplasms/pathology , Cadherins/deficiency , Cell Line, Tumor , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Mutation
SELECTION OF CITATIONS
SEARCH DETAIL
...