Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 167
Filter
1.
J Lipid Res ; 65(4): 100531, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38490635

ABSTRACT

Altered apolipoprotein kinetics play a critical role in promoting dyslipidemia and atherogenesis. Human apolipoprotein kinetics have been extensively evaluated, but similar studies in mice are hampered by the lack of robust methods suitable for the small amounts of blood that can be collected at sequential time points from individual mice. We describe a targeted liquid chromatography tandem mass spectrometry method for simultaneously quantifying the stable isotope enrichment of several apolipoproteins represented by multiple peptides in serial blood samples (15 µl each) obtained after retro-orbital injection of 13C6,15N2-lysine (Lys8) in mice. We determined apolipoprotein fractional clearance rates (FCRs) and production rates (PRs) in WT mice and in two genetic models widely used for atherosclerosis research, LDL receptor-deficient (Ldlr-/-) and apolipoprotein E-deficient (Apoe-/-) mice. Injection of Lys8 produced a unique and readily detectable mass shift of labeled compared with unlabeled peptides with sensitivity allowing robust kinetics analyses. Ldlr-/- mice showed slower FCRs of APOA1, APOA4, total APOB, APOB100, APOCs, APOE and APOM, while FCRs of APOA1, APOB100, APOC2, APOC3, and APOM were not lower in Apoe-/- mice versus WT mice. APOE PR was increased in Ldlr-/- mice, and APOB100 and APOA4 PRs were reduced in Apoe-/- mice. Thus, our method reproducibly quantifies plasma apolipoprotein kinetics in different mouse models. The method can easily be expanded to include a wide range of proteins in the same biospecimen and should be useful for determining the kinetics of apolipoproteins in animal models of human disease.


Subject(s)
Apolipoproteins , Isotope Labeling , Proteomics , Animals , Mice , Proteomics/methods , Apolipoproteins/blood , Kinetics , Receptors, LDL/genetics , Receptors, LDL/metabolism , Apolipoproteins E/deficiency , Apolipoproteins E/blood , Chromatography, Liquid/methods , Mice, Inbred C57BL , Mice, Knockout , Male
2.
J Clin Lipidol ; 18(2): e218-e229, 2024.
Article in English | MEDLINE | ID: mdl-38320926

ABSTRACT

BACKGROUND: In type 1 diabetes, women lose their relative protection (compared to men) against coronary artery disease (CAD), while high-density lipoprotein cholesterol (HDL-C) is less strongly associated with lower CAD risk in women. OBJECTIVE: We aimed to assess whether sex differences in the HDL particle concentration (HDL-P) and cholesterol efflux capacity (CEC) association with CAD may explain these findings. METHODS: HDL-P (calibrated differential ion mobility analysis) and total and ATP binding cassette transporter A1 (ABCA1)-specific CEC were quantified among 279 men and 271 women with type 1 diabetes (baseline mean age 27·8 years; diabetes duration, 19·6 years). Clinical CAD was defined as CAD death, myocardial infarction and/or coronary revascularization. RESULTS: Women had higher large HDL-P levels and marginally lower concentrations of small HDL-P and ABCA1-specific CEC than men. No sex differences were observed in extra-small HDL-P, medium HDL-P and total CEC. During a median follow-up of 26 years, 37·6 % of men and 35·8 % of women developed CAD (p = 0·72). In multivariable Cox models stratified by sex (pTotal HDL-P x sex interaction=0·01), HDL-P was negatively associated with CAD incidence in both sexes. However, associations were stronger in men, particularly for extra-small HDL-P (hazard ratio (HR)men=0·11, 95 % confidence interval (CI): 0·04-0·30; HRwomen=0·68, 95 % CI: 0·28-1·66; pinteraction=0·001). CEC did not independently predict CAD in either sex. CONCLUSION: Despite few absolute differences in HDL-P concentrations by sex, the HDL-P - CAD association was weaker in women, particularly for extra-small HDL-P, suggesting that HDL-P may be less efficient in providing atheroprotection in women and perhaps explaining the lack of a sex difference in CAD in type 1 diabetes.


Subject(s)
Cholesterol, HDL , Coronary Artery Disease , Diabetes Mellitus, Type 1 , Sex Characteristics , Humans , Male , Female , Diabetes Mellitus, Type 1/complications , Diabetes Mellitus, Type 1/blood , Diabetes Mellitus, Type 1/metabolism , Coronary Artery Disease/blood , Coronary Artery Disease/epidemiology , Adult , Cohort Studies , Cholesterol, HDL/blood , ATP Binding Cassette Transporter 1/metabolism , Incidence , Sex Factors , Cholesterol/blood , Middle Aged
4.
Circulation ; 149(10): 774-787, 2024 03 05.
Article in English | MEDLINE | ID: mdl-38018436

ABSTRACT

BACKGROUND: Cholesterol efflux capacity (CEC) predicts cardiovascular disease independently of high-density lipoprotein (HDL) cholesterol levels. Isolated small HDL particles are potent promoters of macrophage CEC by the ABCA1 (ATP-binding cassette transporter A1) pathway, but the underlying mechanisms are unclear. METHODS: We used model system studies of reconstituted HDL and plasma from control and lecithin-cholesterol acyltransferase (LCAT)-deficient subjects to investigate the relationships among the sizes of HDL particles, the structure of APOA1 (apolipoprotein A1) in the different particles, and the CECs of plasma and isolated HDLs. RESULTS: We quantified macrophage and ABCA1 CEC of 4 distinct sizes of reconstituted HDL. CEC increased as particle size decreased. Tandem mass spectrometric analysis of chemically cross-linked peptides and molecular dynamics simulations of APOA1, the major protein of HDL, indicated that the mobility of C-terminus of that protein was markedly higher and flipped off the surface in the smallest particles. To explore the physiological relevance of the model system studies, we isolated HDL from LCAT-deficient subjects, whose small HDLs (like reconstituted HDLs) are discoidal and composed of APOA1, cholesterol, and phospholipid. Despite their very low plasma levels of HDL particles, these subjects had normal CEC. In both the LCAT-deficient subjects and control subjects, the CEC of isolated extra-small HDL (a mixture of extra-small and small HDL by calibrated ion mobility analysis) was 3- to 5-fold greater than that of the larger sizes of isolated HDL. Incubating LCAT-deficient plasma and control plasma with human LCAT converted extra-small and small HDL particles into larger particles, and it markedly inhibited CEC. CONCLUSIONS: We present a mechanism for the enhanced CEC of small HDLs. In smaller particles, the C-termini of the 2 antiparallel molecules of APOA1 are "flipped" off the lipid surface of HDL. This extended conformation allows them to engage with ABCA1. In contrast, the C-termini of larger HDLs are unable to interact productively with ABCA1 because they form a helical bundle that strongly adheres to the lipid on the particle. Enhanced CEC, as seen with the smaller particles, predicts decreased cardiovascular disease risk. Thus, extra-small and small HDLs may be key mediators and indicators of the cardioprotective effects of HDL.


Subject(s)
Apolipoprotein A-I , Cardiovascular Diseases , Humans , Apolipoprotein A-I/metabolism , Cardiovascular Diseases/metabolism , Lipoproteins, HDL/metabolism , Cholesterol , ATP Binding Cassette Transporter 1/genetics , ATP Binding Cassette Transporter 1/metabolism , Macrophages/metabolism , Cholesterol, HDL
5.
medRxiv ; 2023 Nov 04.
Article in English | MEDLINE | ID: mdl-37961344

ABSTRACT

Background: Cholesterol efflux capacity (CEC) predicts cardiovascular disease (CVD) independently of HDL cholesterol (HDL-C) levels. Isolated small HDL particles are potent promoters of macrophage CEC by the ABCA1 pathway, but the underlying mechanisms are unclear. Methods: We used model system studies of reconstituted HDL and plasma from control and lecithin-cholesterol acyltransferase (LCAT)-deficient subjects to investigate the relationships among the sizes of HDL particles, the structure of APOA1 in the different particles, and the CECs of plasma and isolated HDLs. Results: We quantified macrophage and ABCA1 CEC of four distinct sizes of reconstituted HDL (r-HDL). CEC increased as particle size decreased. MS/MS analysis of chemically crosslinked peptides and molecular dynamics simulations of APOA1 (HDL's major protein) indicated that the mobility of that protein's C-terminus was markedly higher and flipped off the surface in the smallest particles. To explore the physiological relevance of the model system studies, we isolated HDL from LCAT-deficient subjects, whose small HDLs-like r-HDLs-are discoidal and composed of APOA1, cholesterol, and phospholipid. Despite their very low plasma levels of HDL particles, these subjects had normal CEC. In both the LCAT-deficient subjects and control subjects, the CEC of isolated extra-small HDL (a mixture of extra-small and small HDL by calibrated ion mobility analysis) was 3-5-fold greater than that of the larger sizes of isolated HDL. Incubating LCAT-deficient plasma and control plasma with human LCAT converted extra-small and small HDL particles into larger particles, and it markedly inhibited CEC. Conclusions: We present a mechanism for the enhanced CEC of small HDLs. In smaller particles, the C-termini of the two antiparallel molecules of APOA1 are flipped off the lipid surface of HDL. This extended conformation allows them to engage with ABCA1. In contrast, the C-termini of larger HDLs are unable to interact productively with ABCA1 because they form a helical bundle that strongly adheres to the lipid on the particle. Enhanced CEC, as seen with the smaller particles, predicts decreased CVD risk. Thus, extra-small and small HDLs may be key mediators and indicators of HDL's cardioprotective effects.

6.
medRxiv ; 2023 Nov 07.
Article in English | MEDLINE | ID: mdl-37986833

ABSTRACT

Background: Cholesterol efflux capacity (CEC) negatively correlates with cardiovascular disease risk. Small HDL particles account almost quantitively for CEC, perhaps mediated through efflux of outer leaflet plasma membrane phospholipids by ABCA1. People with type 1 diabetes (T1D) are at increased risk of coronary artery disease (CAD) despite normal levels of HDL-cholesterol (HDL-C). We therefore tested the hypotheses that small HDL particles (HDL-P)-rather than HDL-C levels-predict incident CAD in T1D. Methods: Incident CAD (CAD death, myocardial infarction, and/or coronary revascularization) was determined in a cohort of 550 participants with childhood-onset T1D. HDL-P was quantified by calibrated ion mobility analysis. CEC and phospholipid efflux were quantified with validated assays. Results: During a median follow-up of 26 years, 36.5% of the participants developed incident CAD. In multivariable Cox models, levels of HDL-C and apolipoprotein A-I (APOA1) did not predict CAD risk. In contrast, extra-small HDL particle levels strongly and negatively predicted risk (hazard ratio [HR]=0.25, 95% confidence interval [CI]=0.13-0.49). An increased concentration of total HDL particles (T-HDL-P) (HR=0.87, CI=0.82-0.92) and three other HDL sizes were weaker predictors of risk: small HDL (HR=0.80, 0.65-0.98), medium HDL (HR=0.78, CI=0.70-0.87) and large HDL (HR=0.72, CI=0.59-0.89). Although CEC negatively associated with incident CAD, that association disappeared after the model was adjusted for T-HDL-P. Isolated small HDLs strongly promoted ABCA1-dependent efflux of membrane outer leaflet phospholipids. Conclusions: Low concentrations of T-HDL-P and all four sizes of HDL subpopulations predicted incident CAD independently of HDL-C, APOA1, and other common CVD risk factors. Extra-small HDL was a much stronger predictor of risk than the other HDLs. Our data are consistent with the proposal that small HDLs play a critical role in cardioprotection in T1D, which might be mediated by macrophage plasma membrane outer leaflet phospholipid export and cholesterol efflux by the ABCA1 pathway.

8.
Curr Opin Lipidol ; 34(5): 208-213, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37548415

ABSTRACT

PURPOSE OF REVIEW: ATP-binding cassette transporter A1 (ABCA1) plays a key role in high-density lipoprotein (HDL) biogenesis and cholesterol export from artery wall cells. Recent evidence challenges the generally accepted model for lipid transport by ABCA1, termed the alternating access mechanism, which proposes that phospholipid moves from the inner leaflet to the outer leaflet of the plasma membrane. RECENT FINDINGS: In contrast to the standard model, our computer simulations of ABCA1 indicate that ABCA1 extracts phospholipid from the plasma membrane's outer leaflet. The lipid then diffuses into the interior of ABCA1 to contact a structure termed the 'gateway'. A conformational change opens the gateway and forces the lipid through a ring-shaped domain, the 'annulus orifice', into the base of an elongated hydrophobic tunnel in the transporter's extracellular domain. Engineered mutations in the gateway and annulus strongly inhibited lipid export by ABCA1 without affecting cell-surface expression levels of the transporter, strongly supporting the proposed model. SUMMARY: Our demonstration that ABCA1 extracts lipid from the outer face of the plasma membrane and forces it into an elongated hydrophobic tunnel contrasts with the alternating access model, which flops phospholipid from the membrane's inner leaflet to its outer leaflet. These results suggest that ABCA1 is a phospholipid translocase that transports lipids by a mechanism distinct from that of other ABC transporters.


Subject(s)
Lipoproteins, HDL , Phospholipids , Humans , Lipoproteins, HDL/metabolism , ATP Binding Cassette Transporter 1/genetics , ATP Binding Cassette Transporter 1/metabolism , Biological Transport , Phospholipids/metabolism , ATP-Binding Cassette Transporters/metabolism
9.
Sci Adv ; 9(35): eadi5571, 2023 09.
Article in English | MEDLINE | ID: mdl-37647397

ABSTRACT

Lipoproteins in cerebrospinal fluid (CSF) of the central nervous system (CNS) resemble plasma high-density lipoproteins (HDLs), which are a compositionally and structurally diverse spectrum of nanoparticles with pleiotropic functionality. Whether CSF lipoproteins (CSF-Lps) exhibit similar heterogeneity is poorly understood because they are present at 100-fold lower concentrations than plasma HDL. To investigate the diversity of CSF-Lps, we developed a sensitive fluorescent technology to characterize lipoprotein subspecies in small volumes of human CSF. We identified 10 distinctly sized populations of CSF-Lps, most of which were larger than plasma HDL. Mass spectrometric analysis identified 303 proteins across the populations, over half of which have not been reported in plasma HDL. Computational analysis revealed that CSF-Lps are enriched in proteins important for wound healing, inflammation, immune response, and both neuron generation and development. Network analysis indicated that different subpopulations of CSF-Lps contain unique combinations of these proteins. Our study demonstrates that CSF-Lp subspecies likely exist that contain compositional signatures related to CNS health.


Subject(s)
Central Nervous System , Lipopolysaccharides , Humans , Lipoproteins , Lipoproteins, HDL , Coloring Agents
10.
J Neuroinflammation ; 20(1): 66, 2023 Mar 09.
Article in English | MEDLINE | ID: mdl-36895046

ABSTRACT

BACKGROUND: Helicobacter pylori (Hp) infects the stomach of 50% of the world's population. Importantly, chronic infection by this bacterium correlates with the appearance of several extra-gastric pathologies, including neurodegenerative diseases. In such conditions, brain astrocytes become reactive and neurotoxic. However, it is still unclear whether this highly prevalent bacterium or the nanosized outer membrane vesicles (OMVs) they produce, can reach the brain, thus affecting neurons/astrocytes. Here, we evaluated the effects of Hp OMVs on astrocytes and neurons in vivo and in vitro. METHODS: Purified OMVs were characterized by mass spectrometry (MS/MS). Labeled OMVs were administered orally or injected into the mouse tail vein to study OMV-brain distribution. By immunofluorescence of tissue samples, we evaluated: GFAP (astrocytes), ßIII tubulin (neurons), and urease (OMVs). The in vitro effect of OMVs in astrocytes was assessed by monitoring NF-κB activation, expression of reactivity markers, cytokines in astrocyte-conditioned medium (ACM), and neuronal cell viability. RESULTS: Urease and GroEL were prominent proteins in OMVs. Urease (OMVs) was present in the mouse brain and its detection coincided with astrocyte reactivity and neuronal damage. In vitro, OMVs induced astrocyte reactivity by increasing the intermediate filament proteins GFAP and vimentin, the plasma membrane αVß3 integrin, and the hemichannel connexin 43. OMVs also produced neurotoxic factors and promoted the release of IFNγ in a manner dependent on the activation of the transcription factor NF-κB. Surface antigens on reactive astrocytes, as well as secreted factors in response to OMVs, were shown to inhibit neurite outgrowth and damage neurons. CONCLUSIONS: OMVs administered orally or injected into the mouse bloodstream reach the brain, altering astrocyte function and promoting neuronal damage in vivo. The effects of OMVs on astrocytes were confirmed in vitro and shown to be NF-κB-dependent. These findings suggest that Hp could trigger systemic effects by releasing nanosized vesicles that cross epithelial barriers and access the CNS, thus altering brain cells.


Subject(s)
Helicobacter pylori , Mice , Animals , Helicobacter pylori/metabolism , Astrocytes , Urease/metabolism , Urease/pharmacology , NF-kappa B/metabolism , Complement Factor B/metabolism , Complement Factor B/pharmacology , Disease Models, Animal , Tandem Mass Spectrometry , Neurons
12.
Nat Commun ; 13(1): 4812, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35974019

ABSTRACT

Production of high density lipoprotein (HDL) requires ATP-binding cassette transporter A1 (ABCA1) to drive phospholipid (PL) from the plasma membrane into extracellular apolipoprotein A-I. Here, we use simulations to show that domains of ABCA1 within the plasma membrane remove PL from the membrane's outer leaflet. In our simulations, after the lipid diffuses into the interior of ABCA1's outward-open cavity, PL extracted by the gateway passes through a ring-shaped domain, the annulus orifice, which forms the base of an elongated hydrophobic tunnel in the transporter's extracellular domain. Engineered mutations in the gateway and annulus strongly inhibit lipid export by ABCA1 without affecting cell-surface expression levels. Our finding that ABCA1 extracts lipid from the outer face of the plasma membrane and forces it through its gateway and annulus into an elongated hydrophobic tunnel contrasts with the alternating access model, which proposes that ABCA1 flops PL substrate from the inner leaflet to the outer leaflet of the membrane. Consistent with our model, ABCA1 lacks the charged amino acid residues in the transmembrane domain found in the floppase members of the ABC transporter family.


Subject(s)
Apolipoprotein A-I , Phospholipids , ATP Binding Cassette Transporter 1/genetics , ATP Binding Cassette Transporter 1/metabolism , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Apolipoprotein A-I/metabolism , Cell Membrane/metabolism , Lipoproteins, HDL/metabolism , Phospholipids/metabolism , Protein Domains
13.
J Lipid Res ; 63(4): 100196, 2022 04.
Article in English | MEDLINE | ID: mdl-35300983

ABSTRACT

Atherosclerotic CVD is the major cause of death in patients with type 1 diabetes mellitus (T1DM). Alterations in the HDL proteome have been shown to associate with prevalent CVD in T1DM. We therefore sought to determine which proteins carried by HDL might predict incident CVD in patients with T1DM. Using targeted MS/MS, we quantified 50 proteins in HDL from 181 T1DM subjects enrolled in the prospective Coronary Artery Calcification in Type 1 Diabetes study. We used Cox proportional regression analysis and a case-cohort design to test associations of HDL proteins with incident CVD (myocardial infarction, coronary artery bypass grafting, angioplasty, or death from coronary heart disease). We found that only one HDL protein-SFTPB (pulmonary surfactant protein B)-predicted incident CVD in all the models tested. In a fully adjusted model that controlled for lipids and other risk factors, the hazard ratio was 2.17 per SD increase of SFTPB (95% confidence interval, 1.12-4.21, P = 0.022). In addition, plasma fractionation demonstrated that SFTPB is nearly entirely bound to HDL. Although previous studies have shown that high plasma levels of SFTPB associate with prevalent atherosclerosis only in smokers, we found that SFTPB predicted incident CVD in T1DM independently of smoking status and a wide range of confounding factors, including HDL-C, LDL-C, and triglyceride levels. Because SFTPB is almost entirely bound to plasma HDL, our observations support the proposal that SFTPB carried by HDL is a marker-and perhaps mediator-of CVD risk in patients with T1DM.


Subject(s)
Atherosclerosis , Cardiovascular Diseases , Diabetes Mellitus, Type 1 , Pulmonary Surfactant-Associated Protein B , Cholesterol, HDL , Diabetes Mellitus, Type 1/complications , Humans , Prospective Studies , Risk Factors , Tandem Mass Spectrometry
14.
J Lipid Res ; 63(3): 100168, 2022 03.
Article in English | MEDLINE | ID: mdl-35051413

ABSTRACT

Because of its critical role in HDL formation, significant efforts have been devoted to studying apolipoprotein A-I (APOA1) structural transitions in response to lipid binding. To assess the requirements for the conformational freedom of its termini during HDL particle formation, we generated three dimeric APOA1 molecules with their termini covalently joined in different combinations. The dimeric (d)-APOA1C-N mutant coupled the C-terminus of one APOA1 molecule to the N-terminus of a second with a short alanine linker, whereas the d-APOA1C-C and d-APOA1N-N mutants coupled the C-termini and the N-termini of two APOA1 molecules, respectively, using introduced cysteine residues to form disulfide linkages. We then tested the ability of these constructs to generate reconstituted HDL by detergent-assisted and spontaneous phospholipid microsolubilization methods. Using cholate dialysis, we demonstrate WT and all APOA1 mutants generated reconstituted HDL particles of similar sizes, morphologies, compositions, and abilities to activate lecithin:cholesterol acyltransferase. Unlike WT, however, the mutants were incapable of spontaneously solubilizing short chain phospholipids into discoidal particles. We found lipid-free d-APOA1C-N and d-APOA1N-N retained most of WT APOA1's ability to promote cholesterol efflux via the ATP binding cassette transporter A1, whereas d-APOA1C-C exhibited impaired cholesterol efflux. Our data support the double belt model for a lipid-bound APOA1 structure in nascent HDL particles and refute other postulated arrangements like the "double super helix." Furthermore, we conclude the conformational freedom of both the N- and C-termini of APOA1 is important in spontaneous microsolubilization of bulk phospholipid but is not critical for ABCA1-mediated cholesterol efflux.


Subject(s)
Apolipoprotein A-I , Cholesterol , ATP Binding Cassette Transporter 1/metabolism , Apolipoprotein A-I/metabolism , Biological Transport , Cholesterol/metabolism , Phosphatidylcholine-Sterol O-Acyltransferase/metabolism , Phospholipids/metabolism
15.
J Clin Invest ; 131(22)2021 11 15.
Article in English | MEDLINE | ID: mdl-34491909

ABSTRACT

Loss-of-function mutations in the transcription factor CREB3L3 (CREBH) associate with severe hypertriglyceridemia in humans. CREBH is believed to lower plasma triglycerides by augmenting the activity of lipoprotein lipase (LPL). However, by using a mouse model of type 1 diabetes mellitus (T1DM), we found that greater liver expression of active CREBH normalized both elevated plasma triglycerides and cholesterol. Residual triglyceride-rich lipoprotein (TRL) remnants were enriched in apolipoprotein E (APOE) and impoverished in APOC3, an apolipoprotein composition indicative of increased hepatic clearance. The underlying mechanism was independent of LPL, as CREBH reduced both triglycerides and cholesterol in LPL-deficient mice. Instead, APOE was critical for CREBH's ability to lower circulating remnant lipoproteins because it failed to reduce TRL cholesterol in Apoe-/- mice. Importantly, individuals with CREB3L3 loss-of-function mutations exhibited increased levels of remnant lipoproteins that were deprived of APOE. Recent evidence suggests that impaired clearance of TRL remnants promotes cardiovascular disease in patients with T1DM. Consistently, we found that hepatic expression of CREBH prevented the progression of diabetes-accelerated atherosclerosis. Our results support the proposal that CREBH acts through an APOE-dependent pathway to increase hepatic clearance of remnant lipoproteins. They also implicate elevated levels of remnants in the pathogenesis of atherosclerosis in T1DM.


Subject(s)
Atherosclerosis/prevention & control , Cyclic AMP Response Element-Binding Protein/physiology , Diabetes Mellitus, Type 1/complications , Dyslipidemias/prevention & control , Lipoproteins/blood , Triglycerides/blood , Animals , Apolipoprotein C-III/blood , Apolipoproteins E/blood , Atherosclerosis/etiology , Chylomicron Remnants/blood , Dyslipidemias/etiology , Humans , Liver/metabolism , Male , Mice , Mice, Inbred C57BL
16.
J Lipid Res ; 62: 100099, 2021.
Article in English | MEDLINE | ID: mdl-34324889

ABSTRACT

Human high-density lipoproteins (HDLs) are a complex mixture of structurally related nanoparticles that perform distinct physiological functions. We previously showed that human HDL containing apolipoprotein A-I (APOA1) but not apolipoprotein A-II (APOA2), designated LpA-I, is composed primarily of two discretely sized populations. Here, we isolated these particles directly from human plasma by antibody affinity chromatography, separated them by high-resolution size-exclusion chromatography and performed a deep molecular characterization of each species. The large and small LpA-I populations were spherical with mean diameters of 109 Å and 91 Å, respectively. Unexpectedly, isotope dilution MS/MS with [15N]-APOA1 in concert with quantitation of particle concentration by calibrated ion mobility analysis demonstrated that the large particles contained fewer APOA1 molecules than the small particles; the stoichiometries were 3.0 and 3.7 molecules of APOA1 per particle, respectively. MS/MS experiments showed that the protein cargo of large LpA-I particles was more diverse. Human HDL and isolated particles containing both APOA1 and APOA2 exhibit a much wider range and variation of particle sizes than LpA-I, indicating that APOA2 is likely the major contributor to HDL size heterogeneity. We propose a ratchet model based on the trefoil structure of APOA1 whereby the helical cage maintaining particle structure has two "settings"-large and small-that accounts for these findings. This understanding of the determinants of HDL particle size and protein cargo distribution serves as a basis for determining the roles of HDL subpopulations in metabolism and disease states.


Subject(s)
Apolipoprotein A-II/chemistry , Apolipoprotein A-I/chemistry , Cholesterol, HDL/chemistry , Particle Size
17.
Arterioscler Thromb Vasc Biol ; 41(8): 2330-2341, 2021 08.
Article in English | MEDLINE | ID: mdl-34134520

ABSTRACT

OBJECTIVE: Niacin therapy fails to reduce cardiovascular events in statin-treated subjects even though it increases plasma HDL-C (HDL [high-density lipoprotein] cholesterol) and decreases LDL-C (LDL [low-density lipoprotein] cholesterol) and triglyceride levels. To investigate potential mechanisms for this lack of cardioprotection, we quantified the HDL proteome of subjects in 2 niacin clinical trials: the CPC study (Carotid Plaque Composition) and the HDL Proteomics substudy of the AIM-HIGH trial (Atherothrombosis Intervention in Metabolic Syndrome with Low HDL/High Triglycerides). APPROACH AND RESULTS: Using targeted proteomics, we quantified levels of 31 HDL proteins from 124 CPC subjects and 120 AIM-HIGH subjects. The samples were obtained at baseline and after 1 year of statin monotherapy or niacin-statin combination therapy. Compared with statin monotherapy, niacin-statin combination therapy did not reduce HDL-associated apolipoproteins APOC1, APOC2, APOC3, and APOC4, despite significantly lowering triglycerides. In contrast, niacin markedly elevated HDL-associated PLTP (phospholipid transfer protein), CLU (clusterin), and HP/HPR (haptoglobin/haptoglobinrelated proteins; P≤0.0001 for each) in both the CPC and AIM-HIGH cohorts. CONCLUSIONS: The addition of niacin to statin therapy resulted in elevated levels of multiple HDL proteins linked to increased atherosclerotic risk, which might have compromised the cardioprotective effects associated with higher HDL-C levels and lower levels of LDL-C and triglycerides. REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT00715273; NCT00880178; NCT00120289.


Subject(s)
Atherosclerosis/drug therapy , Cardiotonic Agents/therapeutic use , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Lipoproteins, HDL/chemistry , Niacin/therapeutic use , Adult , Atherosclerosis/blood , Cardiotonic Agents/pharmacology , Cardiovascular Diseases/blood , Cardiovascular Diseases/prevention & control , Female , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Lipoproteins, HDL/blood , Male , Middle Aged , Niacin/pharmacology , Proteomics
19.
J Clin Lipidol ; 15(1): 235-242, 2021.
Article in English | MEDLINE | ID: mdl-33257283

ABSTRACT

BACKGROUND: Apolipoprotein C3 (APOC3) is a risk factor for incident coronary artery disease in people with type 1 diabetes (T1D). The pathways that link elevated APOC3 levels to an increased risk of incident cardiovascular disease in people with T1D are not understood. OBJECTIVE: To explore potential mechanisms, we investigated the association of APOC3 with insulin resistance and coronary artery calcium (CAC). METHODS: In a random subcohort of participants with T1D from Coronary Artery Calcification in Type 1 Diabetes (n = 134), serum APOC3, high-density lipoprotein (HDL)-associated APOC3, and retinol binding protein 4 (RBP4; a potential marker of insulin resistance) were measured by targeted mass spectrometry. We used linear regression to evaluate associations of serum APOC3 and HDL-APOC3 with APOB, non-HDL cholesterol, serum- and HDL-associated RBP4, and estimated insulin sensitivity and logistic regression to evaluate association with presence of CAC, adjusted for age, sex, and diabetes duration. RESULTS: Serum APOC3 correlated positively with APOB and non-HDL cholesterol and was associated with increased odds of CAC (odds ratio: 1.68, P = .024). Estimated insulin sensitivity was not associated with serum- or HDL-RBP4 but was negatively associated with serum APOC3 in men (ß estimate: -0.318, P = .0040) and decreased odds of CAC (odds ratio: 0.434, P = .0023). CONCLUSIONS: Serum APOC3 associates with increased insulin resistance and CAC in T1D.


Subject(s)
Diabetes Mellitus, Type 1 , Adult , Calcium , Humans , Insulin Resistance , Middle Aged
20.
J Clin Lipidol ; 15(1): 151-161.e0, 2021.
Article in English | MEDLINE | ID: mdl-33288437

ABSTRACT

BACKGROUND: The cardiovascular (CV) safety of estrogen replacement therapy (ERT) in perimenopausal women remains uncertain. Although exogenous estrogens increase HDL cholesterol (HDL-C), estrogen-mediated effects on alternative metrics of HDL that may better predict CV risk are unknown. OBJECTIVE: To determine the effects of transdermal ERT on HDL composition and cholesterol efflux capacity (CEC), as well as the relationships between these metrics and CV risk factors. METHODS: Fasting plasma samples were analyzed from 101 healthy, perimenopausal women randomized to receive either transdermal placebo or transdermal estradiol (100 µg/24 h) with intermittent micronized progesterone. At baseline and after 6 months of treatment, serum HDL CEC, HDL particle concentration, HDL protein composition, insulin resistance and brachial artery flow-mediated dilatation (FMD) were measured. RESULTS: No difference between groups was found for change in plasma HDL-C (p = 0.69). Between-group differences were found for changes in serum HDL total CEC [median change from baseline -5.4 (-17.3,+8.4)% ERT group versus +5.8 (-6.3,+16.9)% placebo group, p = 0.01] and ABCA1-specific CEC [median change from baseline -5.3 (-10.7,+6.7)% ERT group versus +7.4 (-1.5,+18.1)% placebo group, p = 0.0002]. Relative to placebo, transdermal ERT led to reductions in LDL-C (p < 0.0001) and insulin resistance (p = 0.0002). An inverse correlation was found between changes in serum HDL total CEC and FMD (ß = -0.26, p = 0.004). CONCLUSIONS: Natural menopause leads to an increase in serum HDL CEC, an effect that is abrogated by transdermal ERT. However, transdermal ERT leads to favorable changes in major CV risk factors.


Subject(s)
Heart Disease Risk Factors , Adult , Cholesterol, HDL , Estradiol , Female , Humans , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...