Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters











Publication year range
1.
Rev Sci Instrum ; 91(1): 013509, 2020 Jan 01.
Article in English | MEDLINE | ID: mdl-32012577

ABSTRACT

For the ITER fusion experiment, two neutral beam injectors are required for plasma heating and current drive. Each injector supplies a power of about 17 MW, obtained from neutralization of 40 A (46 A), 1 MeV (0.87 MeV) negative deuterium (hydrogen) ions. The full beam is composed of 1280 beamlets, formed in 16 beamlet groups, and strict requirements apply to the beamlet core divergence (<7 mrad). The test facility BATMAN Upgrade uses an ITER-like grid with one beamlet group, which consists of 70 apertures. In a joint campaign performed by IPP and Consorzio RFX to better assess the beam optics, the divergence of a single beamlet was compared to a group of beamlets at BATMAN Upgrade. The single beamlet is measured with a carbon fiber composite tile calorimeter and by beam emission spectroscopy, whereas the divergence of the group of beamlets is measured by beam emission spectroscopy only. When increasing the RF power at low extraction voltages, the divergence of the beamlet and of the group of beamlets is continuously decreasing and no inflection point toward an overperveant beam is found. At the same time, scraping of the extracted ion beam at the second grid (extraction grid) takes place at higher RF power, supported by the absence of the normally seen linear behavior between the measured negative ion density in the plasma close to the extraction system and the measured extracted ion current. Beside its influence on the divergence, beamlet scraping needs to be considered for the determination of the correct perveance and contributes to the measured coextracted electron current.

2.
Rev Sci Instrum ; 91(1): 013511, 2020 Jan 01.
Article in English | MEDLINE | ID: mdl-32012610

ABSTRACT

In multiaperture electrostatic accelerators of negative ion sources, the plasma discharge is sustained by injecting gas in the plasma source, in a dynamic equilibrium with the gas flowing out through the accelerator. In this work, we present a three-dimensional numerical simulation of the gas flow inside the accelerator system of the large negative ion source ELISE at Max-Planck-Institut für Plasmaphysik Garching. ELISE has 640 apertures per electrode and lateral gaps between the electrode support structures that also contribute to the total gas conductance. Assuming molecular regime, we estimated the gas conductance, the gas density profile along the path of the ion beams from upstream of the plasma grid to downstream of the ground grid, and the transverse nonuniformities in the accelerator. The simulation included the most relevant geometrical features, while the results are compared to analytical results.

3.
Rev Sci Instrum ; 90(11): 113304, 2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31779429

ABSTRACT

Negative ion sources for neutral beam injection (NBI) in fusion experiments are based on the surface production of H- or D- on cesiated low work function surfaces. In the recent years, it was demonstrated at the large RF driven ion source of the ELISE (Extraction from a Large Ion Source Experiment) test facility that the requirements for the ITER NBI systems can be fulfilled by hydrogen. This is a big step toward the first operational period of ITER, planned for up to 2035. However, for the following operational period, neutral beam systems working in deuterium are needed. Operation of negative hydrogen ion sources in deuterium is significantly more demanding than in hydrogen: the amount of coextracted electrons is much higher and their increase during pulses is much more pronounced, limiting the achievable performance. This paper presents the results of investigations aimed to improve the insight into the physics related to this isotope effect. Due to the higher atomic mass of deuterium, cesium is removed much more effectively from reservoirs at the walls, resulting in a depletion of these reservoirs and a strongly increased cesium density in the plasma. Additionally, a correlation between the fluxes of charged particles toward the inner ion source surfaces and the coextracted electrons is identified.

4.
Rev Sci Instrum ; 89(10): 10I139, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30399769

ABSTRACT

Along the route to the development of a neutral beam injector for ITER, the Padua based Source for Production of Ion of Deuterium Extracted from Rf plasma (SPIDER) and megavolt ITER injector and concept advancement facilities will make use of neutron diagnostics to quantify the homogeneity of the neutral beam profile by measuring the map of the neutron emission from the beam dump with the close-contact neutron emission surface mapping (CNESM) system. Neutrons are here produced from beam-target reactions between the deuterium beam and the deuterons previously adsorbed in the calorimeter. In order to aid the interpretation of the diagnostic data, a dedicated experiment on neutron emission from beam-target reactions with beam parameters approaching those expected at SPIDER has been performed at the Extraction from a Large Ion Source Experiment (ELISE) neutral beam test facility. The time trace of neutron emission has been measured using a calibrated liquid scintillator detector at increasing power densities on the target. Compared to calculations based on the local mixing model, a systematic discrepancy was observed exceeding the statistical accuracy of the measurements and increasing as a linear function of the power density. The data are used to derive an empirical temperature dependent correction for applications to neutron measurements at SPIDER.

5.
Rev Sci Instrum ; 89(5): 052102, 2018 May.
Article in English | MEDLINE | ID: mdl-29864838

ABSTRACT

The ITER neutral beam system will be equipped with large radio frequency (RF) driven negative ion sources, with a cross section of 0.9 m × 1.9 m, which have to deliver extracted D- ion beams of 57 A at 1 MeV for 1 h. On the extraction from a large ion source experiment test facility, a source of half of this size is being operational since 2013. The goal of this experiment is to demonstrate a high operational reliability and to achieve the extracted current densities and beam properties required for ITER. Technical improvements of the source design and the RF system were necessary to provide reliable operation in steady state with an RF power of up to 300 kW. While in short pulses the required D- current density has almost been reached, the performance in long pulses is determined in particular in Deuterium by inhomogeneous and unstable currents of co-extracted electrons. By application of refined caesium evaporation and distribution procedures, and reduction and symmetrization of the electron currents, considerable progress has been made and up to 190 A/m2 D-, corresponding to 66% of the value required for ITER, have been extracted for 45 min.

7.
Rev Sci Instrum ; 87(2): 02B113, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26931995

ABSTRACT

A spectrally selective imaging system has been installed in the RF negative ion source in the International Thermonuclear Experimental Reactor-relevant negative ion beam test facility ELISE (Extraction from a Large Ion Source Experiment) to investigate distribution of hydrogen Balmer-α emission (Hα) close to the production surface of hydrogen negative ion. We selected a GigE vision camera coupled with an optical band-path filter, which can be controlled remotely using high speed network connection. A distribution of Hα emission near the bias plate has been clearly observed. The same time trend on Hα intensities measured by the imaging diagnostic and the optical emission spectroscopy is confirmed.

8.
Rev Sci Instrum ; 87(2): 02B307, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26932035

ABSTRACT

The large-scale RF-driven ion source of the test facility extraction from a large ion source experiment is aimed to deliver an accelerated ion current of 20 A D(-) (23 A H(-)) with an extracted electron-to-ion ratio below one for up to 1 h. Since the first plasma pulses for 20 s in volume operation in early 2013, followed by caesiation of the ion source, substantial progress has been achieved in extending the pulse length and the RF power. The record pulses in hydrogen are stable 400 s pulses with an extracted ion current of 18.3 A at 180 kW total RF power and 9.3 A at 80 kW stable for 1 h. For deuterium pulse, length and RF power are limited by the amount of co-extracted electrons.

9.
Rev Sci Instrum ; 87(2): 02B309, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26932037

ABSTRACT

The megavolt ITER injector and concept advancement experiment is the prototype and the test bed of the ITER heating and current drive neutral beam injectors, currently in the final design phase, in view of the installation in Padova Research on Injector Megavolt Accelerated facility in Padova, Italy. The beam source is the key component of the system, as its goal is the generation of the 1 MeV accelerated beam of deuterium or hydrogen negative ions. This paper presents the highlights of the latest developments for the finalization of the MITICA beam source design, together with a description of the most recent analyses and R&D activities carried out in support of the design.

10.
Rev Sci Instrum ; 87(2): 02B315, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26932043

ABSTRACT

The performance of large negative ion sources used in neutral beam injection systems is in long pulses mainly determined by the increase of the currents of co-extracted electrons. This is in particular a problem in deuterium and limits the ion currents which are for long pulses below the requirements for the ITER source. In the source of the ELISE test facility, the magnetic field in front of the first grid, which is essential to reduce the electron current, is generated by a current of several kA flowing through the plasma facing grid. Weakening of this field by the addition of permanent magnets placed close to the lateral walls has led to a reduction of the electron current by a factor three without loss of ion current when source was operated in volume production. If this effect can be validated for the cesiated source, it would be a large step towards achieving the ITER parameter in long pulses.

11.
Rev Sci Instrum ; 85(2): 02B305, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24593582

ABSTRACT

An important step in the European R&D roadmap towards the neutral beam heating systems of ITER is the new test facility ELISE (Extraction from a Large Ion Source Experiment) for large-scale extraction from a half-size ITER RF source. The test facility was constructed in the last years at Max-Planck-Institut für Plasmaphysik Garching and is now operational. ELISE is gaining early experience of the performance and operation of large RF-driven negative hydrogen ion sources with plasma illumination of a source area of 1 × 0.9 m(2) and an extraction area of 0.1 m(2) using 640 apertures. First results in volume operation, i.e., without caesium seeding, are presented.

12.
Rev Sci Instrum ; 83(2): 02B104, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22380261

ABSTRACT

Large and powerful negative hydrogen ion sources are required for the neutral beam injection (NBI) systems of future fusion devices. Simplicity and maintenance-free operation favors RF sources, which are developed intensively at the Max-Planck-Institut für Plasmaphysik (IPP) since many years. The negative hydrogen ions are generated by caesium-enhanced surface conversion of atoms and positive ions on the plasma grid surface. With a small scale prototype the required high ion current density and the low fraction of co-extracted electrons at low pressure as well as stable pulses up to 1 h could be demonstrated. The modular design allows extension to large source dimensions. This has led to the decision to choose RF sources for the NBI of the international fusion reactor, ITER. As an intermediate step towards the full size ITER source at IPP, the development will be continued with a half-size source on the new ELISE testbed. This will enable to gain experience for the first time with negative hydrogen ion beams from RF sources of these dimensions.

13.
Rev Sci Instrum ; 79(2 Pt 2): 02A511, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18315132

ABSTRACT

The international fusion experiment ITER requires for the plasma heating and current drive a neutral beam injection system based on negative hydrogen ion sources at 0.3 Pa. The ion source must deliver a current of 40 A D(-) for up to 1 h with an accelerated current density of 200 Am/(2) and a ratio of coextracted electrons to ions below 1. The extraction area is 0.2 m(2) from an aperture array with an envelope of 1.5 x 0.6 m(2). A high power rf-driven negative ion source has been successfully developed at the Max-Planck Institute for Plasma Physics (IPP) at three test facilities in parallel. Current densities of 330 and 230 Am/(2) have been achieved for hydrogen and deuterium, respectively, at a pressure of 0.3 Pa and an electron/ion ratio below 1 for a small extraction area (0.007 m(2)) and short pulses (<4 s). In the long pulse experiment, equipped with an extraction area of 0.02 m(2), the pulse length has been extended to 3600 s. A large rf source, with the width and half the height of the ITER source but without extraction system, is intended to demonstrate the size scaling and plasma homogeneity of rf ion sources. The source operates routinely now. First results on plasma homogeneity obtained from optical emission spectroscopy and Langmuir probes are very promising. Based on the success of the IPP development program, the high power rf-driven negative ion source has been chosen recently for the ITER beam systems in the ITER design review process.

14.
Rev Sci Instrum ; 79(2 Pt 2): 02C108, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18315234

ABSTRACT

IPP Garching is heavily involved in the development of the rf driven H(-)/D(-) ion source for the ITER NBI. After the successful demonstration of the required physical parameters, the experimental conditions have been extended to long pulses and large area beam extraction. This paper contains descriptions of the source and power supply modifications necessitated for long pulses as well as the latest results including the first 1 h pulse. Suppression of the coextracted electron current is a key issue. Experiments with potential control, different magnetic filter fields, and cesium handling to suppress the electrons and stabilize the currents are also reported.

15.
Philos Trans A Math Phys Eng Sci ; 364(1849): 3389-405, 2006 Dec 15.
Article in English | MEDLINE | ID: mdl-17090466

ABSTRACT

Particle physics explores the structure of matter by studying the behaviour of its most fundamental constituents. Despite the remarkable success of our theories, there remains much that is fundamental but unexplained. One of our most pressing questions concerns the origin of mass. Our favoured theoretical explanation for the existence of mass also predicts the existence of a particle that has never been seen-the Higgs boson. In this review, we survey our knowledge of the Higgs boson and explain why, if the theory is correct, we should expect to make our first observation of the elusive Higgs in the next few years, when a major new particle physics facility starts operating. This will be the most powerful particle accelerator in the world. Although searching for the Higgs boson will be challenging in this environment, we hope that our experimental results will allow us to finally understand the origin of mass and extend our knowledge of the Universe yet further.

16.
Antimicrob Agents Chemother ; 44(8): 2211-3, 2000 Aug.
Article in English | MEDLINE | ID: mdl-10898706

ABSTRACT

In vitro activities of seven fluoroquinolones against 140 clinical Acinetobacter baumannii isolates representing 138 different strain types were determined. The rank order of activity was clinafloxacin > gatifloxacin > levofloxacin > trovafloxacin > gemifloxacin = moxifloxacin > ciprofloxacin. The 31 outbreak-related A. baumannii strains were significantly more resistant than were 109 sporadic strains.


Subject(s)
Acinetobacter/drug effects , Anti-Infective Agents/pharmacology , Aza Compounds , Fluoroquinolones , Quinolines , Acinetobacter Infections/epidemiology , Acinetobacter Infections/microbiology , Ciprofloxacin/pharmacology , Disease Outbreaks , Drug Resistance, Microbial/physiology , Gatifloxacin , Gemifloxacin , Germany/epidemiology , Humans , Levofloxacin , Microbial Sensitivity Tests , Moxifloxacin , Naphthyridines/pharmacology , Ofloxacin/pharmacology
17.
Biochemistry ; 38(42): 14088-93, 1999 Oct 19.
Article in English | MEDLINE | ID: mdl-10529256

ABSTRACT

The major light-harvesting complex of photosystem II (LHCII) can be reconstituted in vitro by folding its bacterially expressed apoprotein, Lhcb, in detergent solution in the presence of chlorophylls and carotenoids. To compare the impact of alpha-helical transmembrane domains and hydrophilic loop domains of the apoprotein on complex formation and stability, we introduced random mutations into a segment of the protein comprising the stromal loop, the third (C-proximal) transmembrane helix, and part of the amphipathic helix in the C-terminal domain. The mutant versions of Lhcb were screened for the loss of their ability to form stable LHCII upon reconstitution in vitro. Most steps during the screening, including expression of the recombinant protein, its reconstitution with pigments, and the assay for complex formation by measuring energy transfer from chlorophyll b to chlorophyll a, were performed as one-vessel reactions on 96-well microtiter plates. This enabled us to screen several hundred mutant Lhcb versions. Mutants that had lost their ability to form stable LHCII carried between one and four amino acid exchanges. Among the single-point mutations, several were at positions in the C-proximal transmembrane helix, including an amino acid that is thought to be directly involved in chlorophyll binding. However, we also found four point mutations in the stromal loop domain that, in our assay, completely abolished the formation of stable LHCII. These data show that the stromal loop domain has a significant impact on LHCII formation and/or stability in vitro.


Subject(s)
Carotenoids/metabolism , Chlorophyll/metabolism , Membrane Proteins/genetics , Mutation , Photosynthetic Reaction Center Complex Proteins/genetics , Amino Acid Sequence , Energy Transfer , Light-Harvesting Protein Complexes , Membrane Proteins/metabolism , Molecular Sequence Data , Mutagenesis, Site-Directed , Pisum sativum , Photosynthetic Reaction Center Complex Proteins/metabolism , Photosystem II Protein Complex , Protein Binding/genetics , Protein Folding , Protein Structure, Secondary/genetics , Protein Structure, Tertiary/genetics , Spectrometry, Fluorescence
18.
Protein Sci ; 7(11): 2237-48, 1998 Nov.
Article in English | MEDLINE | ID: mdl-9827990

ABSTRACT

The rate constants for the processes that lead to local opening and closing of the structures around hydrogen bonds in native proteins have been determined for most of the secondary structure hydrogen bonds in the four-helix protein acyl coenzyme A binding protein. In an analysis that combines these results with the energies of activation of the opening processes and the stability of the local structures, three groups of residues in the protein structure have been identified. In one group, the structures around the hydrogen bonds have frequent openings, every 600 to 1,500 s, and long lifetimes in the open state, around 1 s. In another group of local structures, the local opening is a very rare event that takes place only every 15 to 60 h. For these the lifetime in the open state is also around 1 s. The majority of local structures have lifetimes between 2,000 and 20,000 s and relatively short lifetimes of the open state in the range between 30 and 400 ms. Mapping of these groups of amides to the tertiary structure shows that the openings of the local structures are not cooperative at native conditions, and they rarely if ever lead to global unfolding. The results suggest a mechanism of hydrogen exchange by progressive local openings.


Subject(s)
Carrier Proteins/chemistry , Protein Folding , Amides/chemistry , Diazepam Binding Inhibitor , Drug Stability , Hydrogen Bonding , Hydrogen-Ion Concentration , Kinetics , Magnetic Resonance Spectroscopy , Models, Molecular , Temperature , Thermodynamics
19.
Ophthalmologe ; 95(1): 28-32, 1998 Jan.
Article in German | MEDLINE | ID: mdl-9531798

ABSTRACT

BACKGROUND: Pituitary tumors are adenomas of a region of the sella turcica which can produce compression of the anterior visual pathway. PATIENTS AND METHODS: Besides clinical signs of visual improvement such as enhanced visual acuity and visual field, the use of electroophthalmological methods can help monitor patients after neurosurgery. RESULTS: The N75 P100 amplitude of the p-VEP has proven to be the most sensitive marker for measuring-improvements after surgery. This amplitude significantly increased, whereas latency time, visual acuity and visual field showed no statistically significant changes after surgery. CONCLUSIONS: The p-VEP is an important tool in treating patients with compression of the visual pathway.


Subject(s)
Adenoma/surgery , Evoked Potentials, Visual/physiology , Pituitary Neoplasms/surgery , Postoperative Complications/physiopathology , Visual Acuity/physiology , Visual Fields/physiology , Adenoma/physiopathology , Electroencephalography , Follow-Up Studies , Humans , Pituitary Neoplasms/physiopathology , Reaction Time/physiology , Signal Processing, Computer-Assisted , Treatment Outcome , Visual Pathways/physiopathology
20.
Protein Sci ; 5(1): 13-23, 1996 Jan.
Article in English | MEDLINE | ID: mdl-8771192

ABSTRACT

Because of the low solubility of lipids in water, intercellular and intracellular pathways of lipid transfer are necessary, e.g., for membrane formation. The mechanism by which lipids in vivo are transported from their site of biogenesis (endoplasmatic reticulum and the chloroplasts) to their place of action is unknown. Several small plant proteins with the ability to mediate transfer of radiolabeled phospholipids in vitro from liposomal donor membranes to mitochondrial and chloroplast acceptor membranes have been isolated, and a protein with this ability, the nonspecific lipid transfer protein (nsLTP) isolated from barley seeds (bLTP), has been studied here. The structure and the protein lipid interactions of lipid transfer proteins are relevant for the understanding of their function, and here we present the three-dimensional structure in solution of bLTP as determined by NMR spectroscopy. The 1H NMR spectrum of the 91-residue protein was assigned for more than 97% of the protein 1H atoms, and the structure was calculated on the basis of 813 distance restraints from 1H-1H nuclear Overhauser effects, four disulfide bond restraints, from dihedral angle restraints for 66 phi-angles, 61 chi 1 angles, and 2 chi 2 angles, and from 31 sets of hydrogen bond restraints. The solution structure of bLTP consists of four well-defined alpha-helices A-D (A, Cys 3-Gly 19; B, Gly 25-Ala 38; C, Arg 44-Gly 57; D, Leu 63-Cys 73), separated by three short loops that are less well defined and concluded by a well defined C-terminal peptide segment with no observable regular secondary structure. For the 17 structures that are used to represent the solution structure of bLTP, the RMS deviation to an average structure is 0.63 A +/- 0.04 A for backbone atoms and 0.93 A +/- 0.06 A for all heavy atoms. The secondary structure elements and their locations in the sequence resemble those of nsLTP from two other plant species, wheat and maize, whose structures were previously determined (Gincel E et al, 1995, Eur J Biochem 226:413-422; Shin DH et al, 1995, Structure 3:189-199). In bLTP, the residues analogous to those in maize nsLTP that constitute the palmitate binding site are forming a similar hydrophobic cavity and a potential acyl group binding site. Analysis of the solution structure of bLTP and bLTP in complex with a ligand might provide information on the conformational changes in the protein upon ligand binding and subsequently provide information on the mode of ligand uptake and release. In this work, we hope to establish a foundation for further work of determining the solution structure of bLTP in complex with palmitoyl coenzyme A, which is a suitable ligand, and subsequently to outline the mode of ligand binding.


Subject(s)
Lipid Metabolism , Proteins/chemistry , Amino Acid Sequence , Hordeum/chemistry , Magnetic Resonance Spectroscopy , Molecular Sequence Data , Protein Binding , Protein Conformation , Seeds/chemistry , Solutions
SELECTION OF CITATIONS
SEARCH DETAIL