Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
J Inherit Metab Dis ; 2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38556470

ABSTRACT

Recent studies in PKU patients identified alternative biomarkers in blood using untargeted metabolomics. To test the added clinical value of these novel biomarkers, targeted metabolomics of 11 PKU biomarkers (phenylalanine, glutamyl-phenylalanine, glutamyl-glutamyl-phenylalanine, N-lactoyl-phenylalanine, N-acetyl-phenylalanine, the dipeptides phenylalanyl-phenylalanine and phenylalanyl-leucine, phenylalanine-hexose conjugate, phenyllactate, phenylpyruvate, and phenylacetate) was performed in stored serum samples of the well-defined PKU patient-COBESO cohort and a healthy control group. Serum samples of 35 PKU adults and 20 healthy age- and sex-matched controls were analyzed using ultra-high performance liquid chromatography quadrupole time-of-flight mass spectrometry. Group differences were tested using the Mann-Whitney U test. Multiple linear regression analyses were performed with these biomarkers as predictors of (neuro-)cognitive functions working memory, sustained attention, inhibitory control, and mental health. Compared to healthy controls, phenylalanine, glutamyl-phenylalanine, N-lactoyl-phenylalanine, N-acetyl-phenylalanine, phenylalanine-hexose conjugate, phenyllactate, phenylpyruvate, and phenylacetate were significant elevated in PKU adults (p < 0.001). The remaining three were below limit of detection in PKU and controls. Both phenylalanine and N-lactoyl-phenylalanine were associated with DSM-VI Attention deficit/hyperactivity (R2 = 0.195, p = 0.039 and R2 = 0.335, p = 0.002, respectively) of the ASR questionnaire. In addition, N-lactoyl-phenylalanine showed significant associations with ASR DSM-VI avoidant personality (R2 = 0.265, p = 0.010), internalizing (R2 = 0.192, p = 0.046) and externalizing problems (R2 = 0.217, p = 0.029) of the ASR questionnaire and multiple aspects of the MS2D and FI tests, reflecting working memory with R2 between 0.178 (p = 0.048) and 0.204 (p = 0.033). Even though the strength of the models was not considered strong, N-lactoyl-phenylalanine outperformed phenylalanine in its association with working memory and mental health outcomes.

2.
J Inherit Metab Dis ; 46(6): 1104-1113, 2023 11.
Article in English | MEDLINE | ID: mdl-37545091

ABSTRACT

Dried blood spot succinylacetone (SA) is often used as a biomarker for newborn screening (NBS) for tyrosinemia type 1 (TT1). However, false-positive SA results are often observed. Elevated SA may also be due to maleylacetoacetate isomerase deficiency (MAAI-D), which appears to be clinically insignificant. This study investigated whether urine organic acid (uOA) and quantitative urine maleic acid (Q-uMA) analyses can distinguish between TT1 and MAAI-D. We reevaluated/measured uOA (GC-MS) and/or Q-uMA (LC-MS/MS) in available urine samples of nine referred newborns (2 TT1, 7 false-positive), eight genetically confirmed MAAI-D children, and 66 controls. Maleic acid was elevated in uOA of 5/7 false-positive newborns and in the three available samples of confirmed MAAI-D children, but not in TT1 patients. Q-uMA ranged from not detectable to 1.16 mmol/mol creatinine in controls (n = 66) and from 0.95 to 192.06 mmol/mol creatinine in false-positive newborns and MAAI-D children (n = 10). MAAI-D was genetically confirmed in 4/7 false-positive newborns, all with elevated Q-uMA, and rejected in the two newborns with normal Q-uMA. No sample was available for genetic analysis of the last false-positive infant with elevated Q-uMA. Our study shows that MAAI-D is a recognizable cause of false-positive TT1 NBS results. Elevated urine maleic acid excretion seems highly effective in discriminating MAAI-D from TT1.


Subject(s)
Tyrosinemias , Humans , Infant, Newborn , Biomarkers , Chromatography, Liquid , Creatinine , Neonatal Screening/methods , Tandem Mass Spectrometry , Tyrosinemias/diagnosis
3.
Mol Genet Metab ; 135(1): 27-34, 2022 01.
Article in English | MEDLINE | ID: mdl-34974973

ABSTRACT

BACKGROUND: Large neutral amino acid (LNAA) treatment has been suggested as alternative to the burdensome severe phenylalanine-restricted diet. While its working mechanisms and optimal composition have recently been further elucidated, the question whether LNAA treatment requires the natural protein-restricted diet, has still remained. OBJECTIVE: Firstly, to determine whether an additional liberalized natural protein-restricted diet could further improve brain amino acid and monoamine concentrations in phenylketonuria mice on LNAA treatment. Secondly, to compare the effect between LNAA treatment (without natural protein) restriction and different levels of a phenylalanine-restricted diet (without LNAA treatment) on brain amino acid and monoamine concentrations in phenylketonuria mice. DESIGN: BTBR Pah-enu2 mice were divided into two experimental groups that received LNAA treatment with either an unrestricted or semi phenylalanine-restricted diet. Control groups included Pah-enu2 mice on the AIN-93 M diet, a severe or semi phenylalanine-restricted diet without LNAA treatment, and wild-type mice receiving the AIN-93 M diet. After ten weeks, brain and plasma samples were collected to measure amino acid profiles and brain monoaminergic neurotransmitter concentrations. RESULTS: Adding a semi phenylalanine-restricted diet to LNAA treatment resulted in lower plasma phenylalanine but comparable brain amino acid and monoamine concentrations as compared to LNAA treatment (without phenylalanine restriction). LNAA treatment (without phenylalanine restriction) resulted in comparable brain monoamine but higher brain phenylalanine concentrations compared to the severe phenylalanine-restricted diet, and significantly higher brain monoamine but comparable phenylalanine concentrations as compared to the semi phenylalanine-restricted diet. CONCLUSIONS: Present results in PKU mice suggest that LNAA treatment in PKU patients does not need the phenylalanine-restricted diet. In PKU mice, LNAA treatment (without phenylalanine restriction) was comparable to a severe phenylalanine-restricted diet with respect to brain monoamine concentrations, notwithstanding the higher plasma and brain phenylalanine concentrations, and resulted in comparable brain phenylalanine concentrations as on a semi phenylalanine-restricted diet.


Subject(s)
Amino Acids, Neutral , Phenylketonurias , Animals , Dietary Supplements , Disease Models, Animal , Humans , Mice , Phenylalanine , Phenylketonurias/drug therapy , Phenylketonurias/metabolism
4.
Mol Genet Metab ; 133(1): 49-55, 2021 05.
Article in English | MEDLINE | ID: mdl-33766497

ABSTRACT

BACKGROUND: In patients with phenylketonuria, stability of blood phenylalanine and tyrosine concentrations might influence brain chemistry and therefore patient outcome. This study prospectively investigated the effects of tetrahydrobiopterin (BH4), as a chaperone of phenylalanine hydroxylase on diurnal and day-to-day variations of blood phenylalanine and tyrosine concentrations. METHODS: Blood phenylalanine and tyrosine were measured in dried blood spots (DBS) four times daily for 2 days (fasting, before lunch, before dinner, evening) and once daily (fasting) for 6 days in a randomized cross-over design with a period with BH4 and a period without BH4. The sequence was randomized. Eleven proven BH4 responsive PKU patients participated, 5 of them used protein substitutes during BH4 treatment. Natural protein intake and protein substitute dosing was adjusted during the period without BH4 in order to keep DBS phenylalanine levels within target range. Patients filled out a 3-day food diary during both study periods. Variations of DBS phenylalanine and Tyr were expressed in standard deviations (SD) and coefficient of variation (CV). RESULTS: BH4 treatment did not significantly influence day-to-day phenylalanine and tyrosine variations nor diurnal phenylalanine variations, but decreased diurnal tyrosine variations (median SD 17.6 µmol/l, median CV 21.3%, p = 0.01) compared to diet only (median SD 34.2 µmol/l, median CV 43.2%). Consequently, during BH4 treatment diurnal phenylalanine/tyrosine ratio variation was smaller, while fasting tyrosine levels tended to be higher. CONCLUSION: BH4 did not impact phenylalanine variation but decreased diurnal tyrosine and phenylalanine/tyrosine ratio variations, possibly explained by less use of protein substitute and increased tyrosine synthesis.


Subject(s)
Biopterins/analogs & derivatives , Phenylalanine Hydroxylase/genetics , Phenylalanine/blood , Phenylketonurias/drug therapy , Tyrosine/blood , Adult , Biopterins/adverse effects , Biopterins/pharmacology , Brain/drug effects , Brain/metabolism , Brain/pathology , Child , Child, Preschool , Dried Blood Spot Testing , Female , Humans , Male , Phenylalanine Hydroxylase/antagonists & inhibitors , Phenylketonurias/genetics , Phenylketonurias/pathology
5.
J Inherit Metab Dis ; 44(4): 926-938, 2021 07.
Article in English | MEDLINE | ID: mdl-33543789

ABSTRACT

D,L-3-hydroxybutyrate (D,L-3-HB, a ketone body) treatment has been described in several inborn errors of metabolism, including multiple acyl-CoA dehydrogenase deficiency (MADD; glutaric aciduria type II). We aimed to improve the understanding of enantiomer-specific pharmacokinetics of D,L-3-HB. Using UPLC-MS/MS, we analyzed D-3-HB and L-3-HB concentrations in blood samples from three MADD patients, and blood and tissue samples from healthy rats, upon D,L-3-HB salt administration (patients: 736-1123 mg/kg/day; rats: 1579-6317 mg/kg/day of salt-free D,L-3-HB). D,L-3-HB administration caused substantially higher L-3-HB concentrations than D-3-HB. In MADD patients, both enantiomers peaked at 30 to 60 minutes, and approached baseline after 3 hours. In rats, D,L-3-HB administration significantly increased Cmax and AUC of D-3-HB in a dose-dependent manner (controls vs ascending dose groups for Cmax : 0.10 vs 0.30-0.35-0.50 mmol/L, and AUC: 14 vs 58-71-106 minutes*mmol/L), whereas for L-3-HB the increases were significant compared to controls, but not dose proportional (Cmax : 0.01 vs 1.88-1.92-1.98 mmol/L, and AUC: 1 vs 380-454-479 minutes*mmol/L). L-3-HB concentrations increased extensively in brain, heart, liver, and muscle, whereas the most profound rise in D-3-HB was observed in heart and liver. Our study provides important knowledge on the absorption and distribution upon oral D,L-3-HB. The enantiomer-specific pharmacokinetics implies differential metabolic fates of D-3-HB and L-3-HB.


Subject(s)
3-Hydroxybutyric Acid/administration & dosage , 3-Hydroxybutyric Acid/pharmacokinetics , Multiple Acyl Coenzyme A Dehydrogenase Deficiency/drug therapy , Acyl-CoA Dehydrogenase/genetics , Administration, Oral , Animals , Chromatography, Liquid , Humans , Male , Multiple Acyl Coenzyme A Dehydrogenase Deficiency/genetics , Rats , Rats, Wistar , Tandem Mass Spectrometry
6.
Ann Clin Biochem ; 55(6): 693-701, 2018 Nov.
Article in English | MEDLINE | ID: mdl-29792046

ABSTRACT

Background Congenital disorders of glycosylation (CDG) are a growing group of rare genetic disorders. The most frequently used screening method is sialotransferrin profiling using isoelectric focusing (IEF). Capillary zone electrophoresis (CZE) may be a simple and fast alternative. We investigated the Capillarys™ CDT assay (Sebia, France) to screen for N-glycosylation disorders, using IEF as gold standard. Methods Intra- and inter-assay precision were established, and analyses in heparin-anticoagulated plasma and serum were compared. Accuracy was assessed by comparing IEF and CZE profiles of 153 samples, including 49 normal, 53 CDG type I, 2 CDG type II, 1 combined CDG type I and type II and 48 samples with a Tf-polymorphism. Neuraminidase-treated plasma was analysed to discriminate CDG and Tf-polymorphisms using samples of 52 subjects (25 had a confirmed Tf-polymorphism). Age-dependent reference values were established using profiles of 312 samples. Results Heparin-plasma is as suitable as serum for CDG screening with the Capillarys™ CDT assay. The precision of the method is high, with a limit of quantification (LOQ) of 0.5%. All profiles, including CDG and Tf-polymorphisms, were correctly identified with CZE. Forty-nine of 52 neuraminidase-treated samples correctly identified the presence/absence of a Tf-polymorphism. Interferences in 3/52 samples hampered interpretation. Sialo-Tf profiles were dependent of age, in particular in the first three months of age. Conclusions CZE analysis with the Capillarys™ CDT kit (Sebia) is a fast and reliable method for screening of N-glycosylation defects. Tf-polymorphisms could be excluded after overnight incubation with neuraminidase.


Subject(s)
Congenital Disorders of Glycosylation/diagnosis , Electrophoresis, Capillary/methods , Sialoglycoproteins/chemistry , Transferrin/analogs & derivatives , Congenital Disorders of Glycosylation/classification , Glycosylation , Humans , Mass Screening , Polymorphism, Genetic , Reference Standards , Sialoglycoproteins/genetics , Time Factors , Transferrin/chemistry , Transferrin/genetics
7.
JIMD Rep ; 30: 23-31, 2016.
Article in English | MEDLINE | ID: mdl-26898293

ABSTRACT

The analysis of acylcarnitines (AC) in plasma/serum is established as a useful test for the biochemical diagnosis and the monitoring of treatment of organic acidurias and fatty acid oxidation defects. External quality assurance (EQA) for qualitative and quantitative AC is offered by ERNDIM and CDC in dried blood spots but not in plasma/serum samples. A pilot interlaboratory comparison between 14 European laboratories was performed over 3 years using serum/plasma samples from patients with an established diagnosis of an organic aciduria or fatty acid oxidation defect. Twenty-three different samples with a short clinical description were circulated. Participants were asked to specify the method used to analyze diagnostic AC, to give quantitative data for diagnostic AC with the corresponding reference values, possible diagnosis, and advice for further investigations.Although the reference and pathological concentrations of AC varied among laboratories, elevated marker AC for propionic acidemia, isovaleric acidemia, medium-chain acyl-CoA dehydrogenase, very long-chain acyl-CoA dehydrogenase, and multiple acyl-CoA dehydrogenase deficiencies were correctly identified by all participants allowing the diagnosis of these diseases. Conversely, the increased concentrations of dicarboxylic AC were not always identified, and therefore the correct diagnosis was not reach by some participants, as exemplified in cases of malonic aciduria and 3-hydroxy-3-methylglutaryl-CoA lyase deficiency. Misinterpretation occurred in those laboratories that used multiple-reaction monitoring acquisition mode, did not derivatize, or did not separate isomers. However, some of these laboratories suggested further analyses to clarify the diagnosis.This pilot experience highlights the importance of an EQA scheme for AC in plasma.

8.
Mol Genet Metab ; 104 Suppl: S60-3, 2011.
Article in English | MEDLINE | ID: mdl-21996137

ABSTRACT

BACKGROUND: The 24- and 48-hour tetrahydrobiopterin (BH4) loading test (BLT) performed at a minimum baseline phenylalanine concentration of 400 µmol/l is commonly used to test phenylketonuria patients for BH4 responsiveness. This study aimed to analyze differences between the 24- and 48-hour BLT and the necessity of the 400 µmol/l minimum baseline phenylalanine concentration. METHODS: Data on 186 phenylketonuria patients were collected. Patients were supplemented with phenylalanine if phenylalanine was <400 µmol/l. BH4 20mg/kg was administered at T = 0 and T = 24. Blood samples were taken at T=0, 8, 16, 24 and 48 h. Responsiveness was defined as ≥ 30% reduction in phenylalanine concentration at ≥ 1 time point. RESULTS: Eighty-six (46.2%) patients were responsive. Among responders 84% showed a ≥ 30% response at T = 48. Fifty-three percent had their maximal decrease at T = 48. Fourteen patients had ≥ 30% phenylalanine decrease not before T = 48. A ≥ 30% decrease was also seen in patients with phenylalanine concentrations <400 µmol/l. CONCLUSION: In the 48-hour BLT, T = 48 seems more informative than T = 24. Sampling at T = 32, and T = 40 may have additional value. BH4 responsiveness can also be predicted with baseline blood phenylalanine <400 µmol/l, when the BLT is positive. Therefore, if these results are confirmed by data on long-term BH4 responsiveness, we advise to first perform a BLT without phenylalanine loading and re-test at higher phenylalanine concentrations when no response is seen. Most likely, the 48-hour BLT is a good indicator for BH4 responsiveness, but comparison with long term responsiveness is necessary.


Subject(s)
Biopterins/analogs & derivatives , Diagnostic Techniques and Procedures , Phenylalanine/blood , Phenylketonurias/blood , Phenylketonurias/drug therapy , Adolescent , Adult , Biopterins/therapeutic use , Child , Child, Preschool , Demography , Female , Humans , Infant , Male , Middle Aged , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...