Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Front Microbiol ; 12: 699858, 2021.
Article in English | MEDLINE | ID: mdl-34394042

ABSTRACT

Background: Probiotics are generally considered as safe, but infections may rarely occur in vulnerable patients. Alternatives to live microorganisms to manage dysbiosis may be of interest in these patients. Reuterin is a complex component system exhibiting broad spectrum antimicrobial activity and a possible candidate substance in these cases. Methods: Reuterin supernatant was cultured from Lentilactobacillus diolivorans in a bioreactor in a two-step process. Storage stability at -20°C and effect of repeated freeze-thaw cycles were assessed by high performance liquid chromatography (HPLC). Antimicrobial activity was tested against Clostridium difficile, Listeria monocytogenes, Escherichia coli, Enterococcus faecium, Staphylococcus (S.) aureus, Staphylococcus epidermidis, Streptococcus (S.) agalactiae, Propionibacterium acnes, and Pseudomonas aeruginosae. Male BALBc mice were gavage fed with reuterin supernatant (n = 10) or culture medium (n = 10). Fecal volatile organic compounds (VOC) were assessed by gas chromatography mass spectroscopy; the microbiome was examined by 16S rRNA gene sequencing. Results: The supernatant contained 13.4 g/L reuterin (3-hydroxypropionaldehyde; 3-HPA). 3-HPA content remained stable at -20°C for 35 days followed by a slow decrease of its concentration. Repeated freezing/thawing caused a slow 3-HPA decrease. Antimicrobial activity was encountered against S. aureus, S. epidermidis, and S. agalactiae. Microbiome analysis showed no differences in alpha and beta diversity markers. Linear discriminant effect size (LEfSe) analysis identified Lachnospiraceae_bacterium_COE1 and Ruminoclostridium_5_uncultured_Clostridiales_ bacterium (in the reuterin medium group) and Desulfovibrio_uncultured_ bacterium, Candidatus Arthromitus, Ruminococcae_NK4A214_group, and Eubacterium_xylanophilum_group (in the reuterin group) as markers for group differentiation. VOC analysis showed a significant decrease of heptane and increase of 3-methylbutanal in the reuterin group. Conclusion: The supernatant produced in this study contained acceptable amounts of 3-HPA remaining stable for 35 days at -20°C and exhibiting an antimicrobial effect against S. aureus, S. agalactiae, and S. epidermidis. Under in vivo conditions, the reuterin supernatant caused alterations of the fecal microbiome. In the fecal, VOC analysis decreased heptane and increased 3-methylbutanal were encountered. These findings suggest the high potential of the reuterin system to influence the intestinal microbiome in health and disease, which needs to be examined in detail in future projects.

2.
Int J Mol Sci ; 22(12)2021 Jun 15.
Article in English | MEDLINE | ID: mdl-34203988

ABSTRACT

We aimed to assess the in vitro antimicrobial activity and the in vivo effect on the murine fecal microbiome and volatile organic compound (VOC) profile of (S)-reutericyclin. The antimicrobial activity of (S)-reutericyclin was tested against Clostridium difficile, Listeria monocytogenes, Escherichia coli, Enterococcus faecium, Staphylococcus aureus, Staphylococcus (S.) epidermidis, Streptococcus agalactiae, Pseudomonas aeruginosa and Propionibacterium acnes. Reutericyclin or water were gavage fed to male BALBc mice for 7 weeks. Thereafter stool samples underwent 16S based microbiome analysis and VOC analysis by gas chromatography mass spectrometry (GC-MS). (S)-reutericyclin inhibited growth of S. epidermidis only. Oral (S)-reutericyclin treatment caused a trend towards reduced alpha diversity. Beta diversity was significantly influenced by reutericyclin. Linear discriminant analysis Effect Size (LEfSe) analysis showed an increase of Streptococcus and Muribaculum as well as a decrease of butyrate producing Ruminoclostridium, Roseburia and Eubacterium in the reutericyclin group. VOC analysis revealed significant increases of pentane and heptane and decreases of 2,3-butanedione and 2-heptanone in reutericyclin animals. The antimicrobial activity of (S)-reutericyclin differs from reports of (R)-reutericyclin with inhibitory effects on a multitude of Gram-positive bacteria reported in the literature. In vivo (S)-reutericyclin treatment led to a microbiome shift towards dysbiosis and distinct alterations of the fecal VOC profile.


Subject(s)
Feces/microbiology , Microbiota/drug effects , Tenuazonic Acid/analogs & derivatives , Volatile Organic Compounds/analysis , Animals , Discriminant Analysis , Male , Mice, Inbred BALB C , Microbial Sensitivity Tests , Tenuazonic Acid/pharmacology
3.
J Biotechnol ; 257: 61-69, 2017 Sep 10.
Article in English | MEDLINE | ID: mdl-28131859

ABSTRACT

Lactobacillus buchneri is a lactic acid bacterium that naturally inhabits very different ecological niches and plays an ambivalent role in many food and feed fermentation processes, where it can act as useful starter or as spoilage organism. Due to its vicinity to important biotechnological processes like silage making, ethanol production, baking, fermenting vegetables or brewing, L. buchneri was subject of extensive research and is now a quite well studied microorganism. Recently, next generation 'OMICS'-methods were applied to investigate L. buchneri in more detail on a systems biology level. These studies give insights into genetic equipment of L. buchneri, its metabolism. interaction with microbial consortia, and gene regulation under different growth conditions. The present review article is a compilation of the available results and is an attempt that aims to understand how L. buchneri, equipped with a relatively small set of genes, can adapt to so many highly distinct ecological niches, resist the associated, sometimes tough environmental conditions and prevail against other members of the microbial consortia present in the same niche.


Subject(s)
Lactobacillus/genetics , Lactobacillus/physiology , Microbial Consortia/physiology , Systems Biology , DNA, Bacterial/genetics , Ecology , Environment , Ethanol , Gene Expression Regulation, Bacterial/genetics , Genomic Instability , Hydrogen-Ion Concentration , Lactic Acid/metabolism , Lactobacillus/growth & development , Microbial Interactions , Oxygen/metabolism
4.
Microb Cell Fact ; 15: 50, 2016 Mar 10.
Article in English | MEDLINE | ID: mdl-26966093

ABSTRACT

BACKGROUND: Engineering lactic acid bacteria (LAB) is of growing importance for food and feed industry as well as for in vivo vaccination or the production of recombinant proteins in food grade organisms. Often, expression of a transgene is only desired at a certain time point or period, e.g. to minimize the metabolic burden for the host cell or to control the expression time span. For this purpose, inducible expression systems are preferred, though cost and availability of the inducing agent must be feasible. We selected the plasmid free strain Lactobacillus plantarum 3NSH for testing and characterization of novel inducible promoters/repressor systems. Their feasibility in recombinant protein production was evaluated. Expression of the reporter protein mCherry was monitored with the BioLector(®) micro-fermentation system. RESULTS: Reporter gene mCherry expression was compared under the control of different promoter/repressor systems: PlacA (an endogenous promoter/repressor system derived from L. plantarum 3NSH), PxylA (a promoter/repressor system derived from Bacillus megaterium DSMZ 319) and PlacSynth (synthetic promoter and codon-optimized repressor gene based on the Escherichia coli lac operon). We observed that PlacA was inducible solely by lactose, but not by non-metabolizable allolactose analoga. PxylA was inducible by xylose, yet showed basal expression under non-induced conditions. Growth on galactose (as compared to exponential growth phase on glucose) reduced basal mCherry expression at non-induced conditions. PlacSynth was inducible with TMG (methyl ß-D-thiogalactopyranoside) and IPTG (isopropyl ß-D-1-thiogalactopyranoside), but also showed basal expression without inducer. The promoter PlacSynth was used for establishment of a dual plasmid expression system, based on T7 RNA polymerase driven expression in L. plantarum. Comparative Western blot supported BioLector(®) micro-fermentation measurements. Conclusively, overall expression levels were moderate (compared to a constitutive promoter). CONCLUSIONS: We evaluated different inducible promoters, as well as an orthologous expression system, for controlled gene expression in L. plantarum. Furthermore, here we provide proof of concept for a T7 RNA polymerase based expression system for L. plantarum. Thereby we expanded the molecular toolbox for an industrial relevant and generally regarded as safe (GRAS) strain.


Subject(s)
Lactobacillus plantarum/genetics , Promoter Regions, Genetic , Recombinant Proteins/metabolism , Repressor Proteins/metabolism , Base Sequence , Blotting, Western , DNA-Directed RNA Polymerases/metabolism , Isopropyl Thiogalactoside/pharmacology , Lactobacillus plantarum/drug effects , Lactobacillus plantarum/growth & development , Lactose/pharmacology , Molecular Sequence Data , Plasmids/metabolism , Viral Proteins/metabolism , Xylose/pharmacology
5.
PLoS One ; 10(7): e0134149, 2015.
Article in English | MEDLINE | ID: mdl-26230316

ABSTRACT

The Lactobacillus buchneri CD034 strain, known to improve the ensiling process of green fodder and the quality of the silage itself was transcriptionally analyzed by sequencing of transcriptomes isolated under anaerobic vs. aerobic conditions. L. buchneri CD034 was first cultivated under anaerobic conditions and then shifted to aerobic conditions by aeration with 21% oxygen. Cultivations already showed that oxygen was consumed by L. buchneri CD034 after aeration of the culture while growth of L. buchneri CD034 was still observed. RNA sequencing data revealed that irrespective of the oxygen status of the culture, the most abundantly transcribed genes are required for basic cell functions such as protein biosynthesis, energy metabolism and lactic acid fermentation. Under aerobic conditions, 283 genes were found to be transcriptionally up-regulated while 198 genes were found to be down-regulated (p-value < 0.01). Up-regulated genes i. a. play a role in oxygen consumption via oxidation of pyruvate or lactate (pox, lctO). Additionally, genes encoding proteins required for decomposition of reactive oxygen species (ROS) such as glutathione reductase or NADH peroxidase were also found to be up-regulated. Genes related to pH homeostasis and redox potential balance were found to be down-regulated under aerobic conditions. Overall, genes required for lactic acid fermentation were hardly affected by the growth conditions applied. Genes identified to be differentially transcribed depending on the aeration status of the culture are suggested to specify the favorable performance of the strain in silage formation.


Subject(s)
Lactobacillus/genetics , Oxygen/metabolism , RNA, Bacterial/metabolism , RNA, Messenger/metabolism , Sequence Analysis, RNA , Down-Regulation , Genes, Bacterial , Lactobacillus/growth & development , RNA, Bacterial/genetics , RNA, Messenger/genetics , Transcriptome , Up-Regulation
6.
Plasmid ; 81: 9-20, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26038184

ABSTRACT

Lactobacillus plantarum CD033, a strain isolated from grass silage in Austria, harbors a 7.9 kb plasmid designated pCD033. Sequence analysis identified 14 open reading frames and 8 of these were supposed to be putative coding sequences. Gene annotation revealed no putative essential genes being plasmid encoded, but a plasmid addiction system based on a PemI/PemK-like toxin-antitoxin system, able to stabilize plasmid maintenance. Absence of a replication initiation protein, a double strand origin as well as a single strand origin on plasmid pCD033 suggests replication via a new type of theta mechanism, whereby plasmid replication is potentially initiated and regulated by non-coding RNA. Detailed examination of segregational stability of plasmid vectors consisting of pCD033-fragments, combined with a selection marker, resulted in definition of a stably maintained minimal replicon. A gene encoding a RepB/OrfX-like protein was found to be not essential for plasmid replication. Alignment of the amino acid sequence of this protein with related proteins unveiled a highly conserved amino acid motif (LLDQQQ). L. plantarum CD033 was cured of pCD033 resulting in the novel plasmid free strain L. plantarum 3NSH. Plasmid curing demonstrated that no essential features are provided by pCD033 under laboratory conditions.


Subject(s)
Lactobacillus plantarum/genetics , Plasmids/genetics , Amino Acid Sequence , Base Sequence , Computational Biology/methods , Gene Dosage , Gene Order , Molecular Sequence Annotation , Molecular Sequence Data , Open Reading Frames , Plasmids/chemistry , Replicon , Sequence Alignment , Sequence Analysis, DNA
7.
Microb Cell Fact ; 13: 150, 2014 Nov 20.
Article in English | MEDLINE | ID: mdl-25410118

ABSTRACT

BACKGROUND: Lactobacillus plantarum constitutes a well-recognized food-grade system for the expression of recombinant proteins in the field of industrial and medical biotechnology. For applications in vivo or in biotechnological processes, the level of expression of e.g. antigens or enzymes is often critical, as expression levels should be of a certain effectiveness, yet, without putting too much strain to the overall system. The key factors that control gene expression are promoter strength, gene copy number and translation efficiency. In order to estimate the impact of these adjusting screws in L. plantarum CD033, we have tested several constitutive promoters in combination with high and low copy number plasmid backbones and varying space between the Shine-Dalgarno sequence and the start-codon. RESULTS: By combining strong promoters, such as transcription elongation factor promoters, isolated from L. plantarum CD033 and L. buchneri CD034, a synthetic promoter, originally derived from L. plantarum WCSF1 and a heterologous promoter derived from L. buchneri CD034 with a high and a low copy number origin of replication we demonstrated various expression levels of the model protein mCherry. All promoters were feasible for protein expression and in all cases, the high copy number origin of replication increased expression twofold. We found that the optimal spacer between the Shine-Dalgarno sequence and the start codon in L. plantarum consists of 8 nucleotides and elongation as well as shortening this sequence gradually down-regulates gene expression. CONCLUSIONS: We have evaluated the effects of a set of gene regulatory tools to fine tune recombinant gene expression in L. plantarum CD033. We have thus, provided potential expression vectors useful for constitutive protein expression in lactic acid bacteria ranging from moderate to strong production levels.


Subject(s)
Gene Expression , Lactobacillus plantarum/genetics , Lactobacillus plantarum/metabolism , Promoter Regions, Genetic , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Transcriptional Elongation Factors/genetics , Transcriptional Elongation Factors/metabolism
8.
Glycoconj J ; 31(2): 117-31, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24162649

ABSTRACT

Based on the previous demonstration of surface (S-) layer protein glycosylation in Lactobacillus buchneri 41021/251 and because of general advantages of lactic acid bacteria for applied research, protein glycosylation in this bacterial species was investigated in detail. The cell surface of L. buchneri CD034 is completely covered with an oblique 2D crystalline array (lattice parameters, a = 5.9 nm; b = 6.2 nm; γ ~ 77°) formed by self-assembly of the S-layer protein SlpB. Biochemical and mass spectrometric analyses revealed that SlpB is the most abundant protein and that it is O-glycosylated at four serine residues within the sequence S(152)-A-S(154)-S(155)-A-S(157) with, on average, seven Glc(α1-6) residues, each. Subcellular fractionation of strain CD034 indicated a sequential order of SlpB export and glucosylation as evidenced by lack of glucosylation of cytosolic SlpB. Protein glycosylation analysis was extended to strain L. buchneri NRRL B-30929 where an analogous glucosylation scenario could be detected, with the S-layer glycoprotein SlpN containing an O-glycosylation motif identical to that of SlpB. This corroborates previous data on S-layer protein glucosylation of strain 41021/251 and let us propose a species-wide S-layer protein O-glucosylation in L. buchneri targeted at the sequence motif S-A-S-S-A-S. Search of the L. buchneri genomes for the said glucosylation motif revealed one further ORF, encoding the putative glycosyl-hydrolase LbGH25B and LbGH25N in L. buchneri CD034 and NRRL B-30929, respectively, for which we have indications of a glycosylation comparable to that of the S-layer proteins. These findings demonstrate the presence of a distinct protein O-glucosylation system in Gram-positive and beneficial microbes.


Subject(s)
Antigens, Surface/chemistry , Lactobacillus/metabolism , Membrane Glycoproteins/metabolism , Polysaccharides/metabolism , Blotting, Western , Chromatography, Liquid , Electrophoresis, Polyacrylamide Gel , Glycosylation , Microscopy, Electron, Transmission , Spectrometry, Mass, Electrospray Ionization
9.
J Biotechnol ; 167(3): 334-43, 2013 Sep 10.
Article in English | MEDLINE | ID: mdl-23880441

ABSTRACT

Silage is green fodder conserved by lactic acid fermentation performed by epiphytic lactic acid bacteria under anaerobic conditions. To improve the ensiling process and the quality of the resulting silage, starter cultures are added to the fresh forage. A detailed analysis of the microbial community playing a role in grass ensiling has been carried out by high throughput sequencing technologies. Moreover, the influence of the inoculant Lactobacillus buchneri CD034 on the microbial community composition was studied. For this purpose, grass was ensiled untreated or inoculated with L. buchneri CD034. The fresh forage as well as silages after 14 and 58 days of fermentation were characterized physico-chemically. Characteristic silage conditions such as increased titers of lactic acid bacteria and higher concentrations of acetic acid were observed in the inoculated silage in comparison to the untreated samples. Taxonomic community profiles deduced from 16S rDNA amplicon sequences indicated that the relative abundance of Lactococci diminished in the course of fermentations and that the proportion of bacteria belonging to the phyla Proteobacteria and Bacteroidetes increased during the fermentation of untreated silage. In the inoculated silage, members of these phyla were repressed due to an increased abundance of Lactobacilli. In addition, metagenome analyses of silage samples confirmed taxonomic profiles based on 16S rDNA amplicons. Moreover, Lactobacillus plantarum, Lactobacillus brevis and Lactococcus lactis were found to be dominant species within silages as analyzed by means of fragment recruitments of metagenomic sequence reads on complete reference genome sequences. Fragment recruitments also provided clear evidence for the competitiveness of the inoculant strain L. buchneri CD034 during the fermentation of the inoculated silage. The inoculation strain was able to outcompete other community members and also affected physico-chemical characteristics of the silage.


Subject(s)
Bacteria/classification , Lactobacillus/classification , Metagenome/genetics , Microbial Consortia/genetics , Silage/microbiology , Bacteria/genetics , Bacteria/isolation & purification , DNA, Bacterial/genetics , Fermentation , Lactobacillus/genetics , Lactobacillus/isolation & purification , Poaceae , RNA, Ribosomal, 16S/genetics
10.
Microb Cell Fact ; 11: 141, 2012 Oct 25.
Article in English | MEDLINE | ID: mdl-23098256

ABSTRACT

BACKGROUND: Lactic acid bacteria (LAB) play an important role in agricultural as well as industrial biotechnology. Development of improved LAB strains using e.g. library approaches is often limited by low transformation efficiencies wherefore one reason could be differences in the DNA methylation patterns between the Escherichia coli intermediate host for plasmid amplification and the final LAB host. In the present study, we examined the influence of DNA methylation on transformation efficiency in LAB and developed a direct cloning approach for Lactobacillus plantarum CD033. Therefore, we propagated plasmid pCD256 in E. coli strains with different dam/dcm-methylation properties. The obtained plasmid DNA was purified and transformed into three different L. plantarum strains and a selection of other LAB species. RESULTS: Best transformation efficiencies were obtained using the strain L. plantarum CD033 and non-methylated plasmid DNA. Thereby we achieved transformation efficiencies of ~ 10(9) colony forming units/µg DNA in L. plantarum CD033 which is in the range of transformation efficiencies reached with E. coli. Based on these results, we directly transformed recombinant expression vectors received from PCR/ligation reactions into L. plantarum CD033, omitting plasmid amplification in E. coli. Also this approach was successful and yielded a sufficient number of recombinant clones. CONCLUSIONS: Transformation efficiency of L. plantarum CD033 was drastically increased when non-methylated plasmid DNA was used, providing the possibility to generate expression libraries in this organism. A direct cloning approach, whereby ligated PCR-products where successfully transformed directly into L. plantarum CD033, obviates the construction of shuttle vectors containing E. coli-specific sequences, as e.g. a ColEI origin of replication, and makes amplification of these vectors in E. coli obsolete. Thus, plasmid constructs become much smaller and occasional structural instability or mutagenesis during E. coli propagation is excluded. The results of our study provide new genetic tools for L. plantarum which will allow fast, forward and systems based genetic engineering of this species.


Subject(s)
Genetic Vectors/genetics , Lactobacillus plantarum/genetics , Plasmids/metabolism , Transformation, Bacterial , Cloning, Molecular , DNA Methylation , Electroporation , Lactobacillus plantarum/metabolism , Plasmids/genetics
11.
J Biotechnol ; 161(2): 153-66, 2012 Oct 15.
Article in English | MEDLINE | ID: mdl-22465289

ABSTRACT

Lactobacillus buchneri belongs to the group of heterofermentative lactic acid bacteria and is a common member of the silage microbiome. Here we report the completely annotated genomic sequence of L. buchneri CD034, a strain isolated from stable grass silage. The whole genome of L. buchneri CD034 was sequenced on the Roche Genome Sequencer FLX platform. It was found to consist of four replicons, a circular chromosome, and three plasmids. The circular chromosome was predicted to encode 2319 proteins and contains a genomic island and two prophages which significantly differ in G+C-content from the remaining chromosome. It possesses all genes for enzymes of a complete phosphoketolase pathway, whereas two enzymes necessary for glycolysis are lacking. This confirms the classification of L. buchneri CD034 as an obligate heterofermentative lactic acid bacterium. A set of genes considered to be involved in the lactate degradation pathway and genes putatively involved in the breakdown of plant cell wall polymers were identified. Moreover, several genes encoding putative S-layer proteins and two CRISPR systems, belonging to the subclasses I-E and II-A, are located on the chromosome. The largest plasmid pCD034-3 was predicted to encode 57 genes, including a putative polysaccharide synthesis gene cluster, whereas the functions of the two smaller plasmids, pCD034-1 and pCD034-2, remain cryptic. Phylogenetic analysis based on sequence comparison of the conserved marker gene rpoA reveals that L. buchneri CD034 is more closely related to Lactobacillus hilgardii strains than to Lactobacillus brevis and Lactobacillus plantarum strains. Comparison of the L. buchneri CD034 core genome to other fully sequenced and closely related members of the genus Lactobacillus disclosed a high degree of conservation between L. buchneri CD034 and the recently sequenced L. buchneri strain NRRL B-30929 and a more distant relationship to L. buchneri ATCC 11577 and L. brevis ssp. gravesensis ATCC 27305, which cluster together with L. hilgardii type strain ATCC 8290. L. buchneri CD034 genome information will certainly provide the basis for further postgenome studies with the objective to optimize application of the strain in silage production.


Subject(s)
Genome, Bacterial , Lactobacillus/genetics , Poaceae/microbiology , Silage/microbiology , Anaerobiosis , Base Sequence , DNA Transposable Elements , Lactobacillus/isolation & purification , Metabolic Networks and Pathways/genetics , Molecular Sequence Annotation , Molecular Sequence Data , Phylogeny , Prophages/genetics , Sequence Analysis, DNA
12.
Mol Biotechnol ; 52(1): 40-8, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22081307

ABSTRACT

The objectives of this study were to establish transformation protocols for Lactobacillus plantarum CD033 and Lactobacillus buchneri CD034, two industrial silage strains and to test the influence of selected origins of replication on plasmid copy number, plasmid stability, and plasmid incompatibility in these strains. Electro-transformation protocols were optimized by examination of the influence of different electroporation solutions and cell wall weakening agents on transformation efficiency. Using Lithium acetate as cell wall weakening agent, we could achieve transformation efficiencies of 8 × 10(4) transformants per 1 µg DNA for L. buchneri CD034 which is to our knowledge the highest described for this species up to now. In order to test feasibility of previously described origins of replication derived from Bacillus subtilis, L. plantarum, Lactococcus lactis, and two novel L. buchneri CD034 plasmids to drive replication in our two selected Lactobacillus strains, six shuttle vectors were constructed. Results indicate that, in terms of stable propagation and high gene copy numbers (up to 238 copies/chromosome), the most suitable origins of replication for the construction of expression vectors for the selected silage strains were the ones derived from the novel L. buchneri CD034 plasmids.


Subject(s)
Cloning, Molecular/methods , Gene Expression , Genetic Vectors/genetics , Lactobacillus plantarum/metabolism , Lactobacillus/metabolism , Replication Origin/genetics , Chromosomes, Bacterial/genetics , DNA Replication/genetics , DNA, Circular/genetics , Gene Dosage/genetics , Plasmids/metabolism , Transformation, Bacterial/genetics
13.
Plasmid ; 66(3): 159-68, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21907734

ABSTRACT

Lactobacillus buchneri is probably the most beneficial microorganism for efficient preservation of animal feed silages made from grass, maize and other plant material against aerobic spoilage. Its obligatory heterofermentative nature, acid resistance and robustness have drawn attention to this species for applications as silage starter culture as well as for genetic engineering. For the first time, two cryptic plasmids present in the same L. buchneri strain, L. buchneri CD034, were isolated, sequenced and characterized. The larger plasmid, designated pCD034-1 was found to be 3424 bp in length with a G+C content of 38.36%. The smaller plasmid, designated pCD034-2 was found to be 2707 bp in length with a G+C content of 38.60%. On both plasmids we predicted three open reading frames. On pCD034-1, ORF 1 encodes a putative replication protein which shares 99% identity with the RepA protein of a Lactobacillus plantarum derived pC194/pUB110-family plasmid. ORF 2 encodes a putative protein of unknown function. ORF 1 and ORF 2 of pCD034-2 correspond to RepA and RepB proteins similar to those of plasmid pLB4 from L. plantarum. ORF 3 of both plasmids encodes a putative mobilization protein similar to that of the pediococcal plasmid pF8801. Double strand origins, putative single strand origins and typical mobilization start signals were identified. Both plasmids were shown to be maintained at relatively high plasmid copy numbers. Two shuttle vectors carrying the origins of replication of pCD034-1 and pCD034-2 were constructed and used to successfully transform two other species isolated from the same environment. Hence, we consider the two novel L. buchneri plasmids a valuable resource for the generation of shuttle and expression vectors for LAB.


Subject(s)
Lactobacillus/genetics , Plasmids/genetics , Amino Acid Sequence , Base Sequence , Gene Expression Regulation, Bacterial , Gene Order , Molecular Sequence Data , Open Reading Frames , Sequence Alignment , Sequence Analysis, DNA , Transformation, Bacterial
14.
Biodegradation ; 22(1): 25-30, 2011 Feb.
Article in English | MEDLINE | ID: mdl-20567881

ABSTRACT

Previous research identified several microorganisms and pathways capable of degrading the mycotoxin fumonisin B1 (FB1). Degradation of FB1 by microorganisms seems to comprise two essential steps: hydrolysis to hydrolyzed fumonisin B1 (HFB1) and deamination of the hydrolysis product. One of the previously studied microorganisms was the Gram negative bacterium ATCC 55552. The gene corresponding to the first step of FB1 degradation in this bacterium was identified, but the genetic basis for deamination of the hydrolyzed intermediate remained unexplained (Duvick et al. 2000, PCT patent application WO200004158). Here we report the sequence and HFB1-deaminating activity of a novel aminotransferase encoded by the bacterium ATCC 55552. The corresponding gene was identified, sequenced, and over-expressed in Escherichia coli. Cell lysates of the recombinant E. coli strain showed distinct HFB1-deaminating activity in the presence of pyridoxal phosphate and pyruvate, as was demonstrated by liquid chromatography-mass spectrometry. Thus, we suggest the novel enzyme to be part of the fumonisin catabolic pathway of the bacterium ATCC 55552.


Subject(s)
Bacterial Proteins/metabolism , Fumonisins/metabolism , Gram-Negative Bacteria/metabolism , Transaminases/metabolism , Amino Acid Sequence , Bacterial Proteins/genetics , Base Sequence , Deamination , Gram-Negative Bacteria/enzymology , Hydrolysis , Molecular Sequence Data , Transaminases/genetics
15.
Microb Cell Fact ; 9: 62, 2010 Aug 18.
Article in English | MEDLINE | ID: mdl-20718948

ABSTRACT

BACKGROUND: Fumonisin B(1) is a cancerogenic mycotoxin produced by Fusarium verticillioides and other fungi. Sphingopyxis sp. MTA144 can degrade fumonisin B(1), and a key enzyme in the catabolic pathway is an aminotransferase which removes the C2-amino group from hydrolyzed fumonisin B(1). In order to study this aminotransferase with respect to a possible future application in enzymatic fumonisin detoxification, we attempted expression of the corresponding fumI gene in E. coli and purification of the enzyme. Since the aminotransferase initially accumulated in inclusion bodies, we compared the effects of induction level, host strain, expression temperature, solubility enhancers and a fusion partner on enzyme solubility and activity. RESULTS: When expressed from a T7 promoter at 30 degrees C, the aminotransferase accumulated invariably in inclusion bodies in DE3 lysogens of the E. coli strains BL21, HMS174, Rosetta 2, Origami 2, or Rosetta-gami. Omission of the isopropyl-beta-D-thiogalactopyranoside (IPTG) used for induction caused a reduction of expression level, but no enhancement of solubility. Likewise, protein production but not solubility correlated with the IPTG concentration in E. coli Tuner(DE3). Addition of the solubility enhancers betaine and sorbitol or the co-enzyme pyridoxal phosphate showed no effect. Maltose-binding protein, used as an N-terminal fusion partner, promoted solubility at 30 degrees C or less, but not at 37 degrees C. Low enzyme activity and subsequent aggregation in the course of purification and cleavage indicated that the soluble fusion protein contained incorrectly folded aminotransferase. Expression in E. coli ArcticExpress(DE3), which co-expresses two cold-adapted chaperonins, at 11 degrees C finally resulted in production of appreciable amounts of active enzyme. Since His tag-mediated affinity purification from this strain was hindered by co-elution of chaperonin, two steps of chromatography with optimized imidazole concentration in the binding buffer were performed to obtain 1.45 mg of apparently homogeneous aminotransferase per liter of expression culture. CONCLUSIONS: We found that only reduction of temperature, but not reduction of expression level or fusion to maltose-binding protein helped to produce correctly folded, active aminotransferase FumI in E. coli. Our results may provide a starting point for soluble expression of related aminotransferases or other aggregation-prone proteins in E. coli.


Subject(s)
Escherichia coli/metabolism , Fumonisins/metabolism , Recombinant Fusion Proteins/biosynthesis , Sphingomonadaceae/enzymology , Transaminases/biosynthesis , Cold Temperature , Deamination , Hydrolysis , Inclusion Bodies/metabolism , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/isolation & purification , Solubility , Transaminases/chemistry , Transaminases/genetics
16.
J Biotechnol ; 145(2): 120-9, 2010 Jan 15.
Article in English | MEDLINE | ID: mdl-19922747

ABSTRACT

Detoxification of the mycotoxin fumonisin B(1) comprises at least two enzymatic steps, an initial deesterification reaction, followed by deamination of the resulting hydrolyzed fumonisin B(1). In this study, two genes that are responsible for degradation of fumonisin B(1) by the bacterium Sphingopyxis sp. MTA144 were identified within a gene cluster, assumed to be associated with fumonisin degradation. The first gene encodes a protein which shows similarity to carboxylesterases, type B. The second gene encodes a polypeptide homologous to aminotransferases, class III. The two genes were isolated and expressed heterologously. The effect of the recombinant enzymes on fumonisin B(1) and hydrolyzed fumonisin B(1) was determined. The recombinant carboxylesterase was shown to catalyze the deesterification of fumonisin B(1) to hydrolyzed fumonisin B(1). The heterologously expressed aminotransferase was shown to deaminate hydrolyzed fumonisin B(1) in the presence of pyruvate and pyridoxal phosphate. We propose that the consecutive action of these two enzymes is sufficient for fumonisin B(1) detoxification. The results of this work provide a basis for the development of an enzymatic detoxification process for fumonisin B(1) in food and animal feed, especially under oxygen limited conditions, as they are found, e.g. in ensilaged forage or in the intestinal tract of animals.


Subject(s)
Carboxylesterase/chemistry , Carboxylesterase/metabolism , Fumonisins/chemistry , Fumonisins/metabolism , Sphingomonadaceae/enzymology , Transaminases/chemistry , Transaminases/metabolism , Biodegradation, Environmental , Enzyme Activation , Hydrolysis
SELECTION OF CITATIONS
SEARCH DETAIL
...